These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8559074)

  • 1. Identification and characterization of a cell envelope protein of Haemophilus influenzae contributing to phase variation in colony opacity and nasopharyngeal colonization.
    Weiser JN; Chong ST; Greenberg D; Fong W
    Mol Microbiol; 1995 Aug; 17(3):555-64. PubMed ID: 8559074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opacity-associated protein A contributes to the binding of Haemophilus influenzae to chang epithelial cells.
    Prasadarao NV; Lysenko E; Wass CA; Kim KS; Weiser JN
    Infect Immun; 1999 Aug; 67(8):4153-60. PubMed ID: 10417187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between colony morphology and the life cycle of Haemophilus influenzae: the contribution of lipopolysaccharide phase variation to pathogenesis.
    Weiser JN
    J Infect Dis; 1993 Sep; 168(3):672-80. PubMed ID: 8102630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic variation in Haemophilus influenzae: the interrelationship of colony opacity, capsule and lipopolysaccharide.
    Roche RJ; Moxon ER
    Microb Pathog; 1995 Feb; 18(2):129-40. PubMed ID: 7643742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of box elements on the frequency of phenotypic variation.
    Saluja SK; Weiser JN
    Mol Microbiol; 1995 Apr; 16(2):215-27. PubMed ID: 7565084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-variable lipopolysaccharide structures enhance the invasive capacity of Haemophilus influenzae.
    Weiser JN; Williams A; Moxon ER
    Infect Immun; 1990 Oct; 58(10):3455-7. PubMed ID: 2401571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a second family of high-molecular-weight adhesion proteins expressed by non-typable Haemophilus influenzae.
    Barenkamp SJ; St Geme JW
    Mol Microbiol; 1996 Mar; 19(6):1215-23. PubMed ID: 8730864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b.
    Jarosik GP; Sanders JD; Cope LD; Muller-Eberhard U; Hansen EJ
    Infect Immun; 1994 Jun; 62(6):2470-7. PubMed ID: 8188372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and virulence analysis of catalase mutants of Haemophilus influenzae.
    Bishai WR; Howard NS; Winkelstein JA; Smith HO
    Infect Immun; 1994 Nov; 62(11):4855-60. PubMed ID: 7927766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd.
    Chandler MS
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1626-30. PubMed ID: 1542653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase variation of lic1A, lic2A and lic3A in colonization of the nasopharynx, bloodstream and cerebrospinal fluid by Haemophilus influenzae type b.
    Hosking SL; Craig JE; High NJ
    Microbiology (Reading); 1999 Nov; 145 ( Pt 11)():3005-3011. PubMed ID: 10589708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae.
    Bakaletz LO; Baker BD; Jurcisek JA; Harrison A; Novotny LA; Bookwalter JE; Mungur R; Munson RS
    Infect Immun; 2005 Mar; 73(3):1635-43. PubMed ID: 15731063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of the cell wall of Haemophilus influenzae type b by transformation with cloned DNA: association with attenuated virulence.
    Zwahlen A; Rubin LG; Connelly CJ; Inzana TJ; Moxon ER
    J Infect Dis; 1985 Sep; 152(3):485-92. PubMed ID: 3875666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein D, the glycerophosphodiester phosphodiesterase from Haemophilus influenzae with affinity for human immunoglobulin D, influences virulence in a rat otitis model.
    Janson H; Melhus A; Hermansson A; Forsgren A
    Infect Immun; 1994 Nov; 62(11):4848-54. PubMed ID: 7927765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of lipopolysaccharide to pathogenicity of Haemophilus influenzae: comparative virulence of genetically-related strains in rats.
    Zwahlen A; Rubin LG; Moxon ER
    Microb Pathog; 1986 Oct; 1(5):465-73. PubMed ID: 3509884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis.
    Rosadini CV; Wong SM; Akerley BJ
    Infect Immun; 2008 Apr; 76(4):1498-508. PubMed ID: 18212083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence.
    Watson ME; Jarisch J; Smith AL
    Mol Microbiol; 2004 Jul; 53(2):651-64. PubMed ID: 15228541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Variation of
    Li J; Zhang JR
    Microbiol Spectr; 2019 Jan; 7(1):. PubMed ID: 30737916
    [No Abstract]   [Full Text] [Related]  

  • 19. Complex role of hemoglobin and hemoglobin-haptoglobin binding proteins in Haemophilus influenzae virulence in the infant rat model of invasive infection.
    Seale TW; Morton DJ; Whitby PW; Wolf R; Kosanke SD; VanWagoner TM; Stull TL
    Infect Immun; 2006 Nov; 74(11):6213-25. PubMed ID: 16966415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Haemophilus two-dimensional protein database.
    Cash P; Argo E; Langford PR; Kroll JS
    Electrophoresis; 1997 Aug; 18(8):1472-82. PubMed ID: 9298661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.