BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8559450)

  • 1. Molecular mechanisms in renal phosphate reabsorption.
    Murer H; Biber J
    Nephrol Dial Transplant; 1995; 10(9):1501-4. PubMed ID: 8559450
    [No Abstract]   [Full Text] [Related]  

  • 2. Parathyroid hormone reduces phosphate transport irreversibly in a cultured renal cell line, OK.
    Malmström K; Murer H
    Prog Clin Biol Res; 1988; 252():337-42. PubMed ID: 3347624
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kidney function from the molecular viewpoint].
    Murer H; Biber J
    Praxis (Bern 1994); 2000 Mar; 89(11):443-9. PubMed ID: 10758731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH on the low and high affinity Na+-phosphate co-transport system in rat renal cortex.
    Bindels RJ; van den Broek LA; van Os CH
    Prog Clin Biol Res; 1988; 252():359-64. PubMed ID: 3347626
    [No Abstract]   [Full Text] [Related]  

  • 6. Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II.
    Keusch I; Traebert M; Lötscher M; Kaissling B; Murer H; Biber J
    Kidney Int; 1998 Oct; 54(4):1224-32. PubMed ID: 9767538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal tubular phosphate reabsorption: molecular mechanisms.
    Murer H; Hernando N; Forster I; Biber J
    Physiol Rev; 2000 Oct; 80(4):1373-409. PubMed ID: 11015617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular/molecular control of renal Na/Pi-cotransport.
    Murer H; Forster I; Hilfiker H; Pfister M; Kaissling B; Lötscher M; Biber J
    Kidney Int Suppl; 1998 Apr; 65():S2-10. PubMed ID: 9551425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of the sodium/phosphate transporter during postnatal ontogeny of the rat kidney.
    Traebert M; Lötscher M; Aschwanden R; Ritthaler T; Biber J; Murer H; Kaissling B
    J Am Soc Nephrol; 1999 Jul; 10(7):1407-15. PubMed ID: 10405196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The renal type IIa Na/Pi cotransporter: structure-function relationships.
    Murer H; Köhler K; Lambert G; Stange G; Biber J; Forster I
    Cell Biochem Biophys; 2002; 36(2-3):215-20. PubMed ID: 12139407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal phosphate transport: localization, properties and identification, a progress report.
    Shirazi-Beechey SP; Gorvel JP; Beechey RB
    Prog Clin Biol Res; 1988; 252():59-64. PubMed ID: 3347632
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel aspects in regulated expression of the renal type IIa Na/Pi-cotransporter.
    Bacic D; Wagner CA; Hernando N; Kaissling B; Biber J; Murer H
    Kidney Int Suppl; 2004 Oct; (91):S5-S12. PubMed ID: 15461703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate transport adaptation in intestinal brush border membrane vesicles (BBMV) and plasma levels of 1,25-dihydroxycholecalciferol.
    Danisi G; Caverzasio J; Trechsel U; Straub R; Bonjour JP
    Prog Clin Biol Res; 1988; 252():65-6. PubMed ID: 3347633
    [No Abstract]   [Full Text] [Related]  

  • 14. The renal sodium/phosphate symporters: evidence for different functional oligomeric states.
    Jetté M; Vachon V; Potier M; Béliveau R
    Biochemistry; 1996 Dec; 35(48):15209-14. PubMed ID: 8952468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of phosphate balance in the kidney].
    Inishi Y; Hase H
    Clin Calcium; 2005 Jul; 15(7):115-8. PubMed ID: 15995306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraperitoneal administration of recombinant receptor-associated protein causes phosphaturia via an alteration in subcellular distribution of the renal sodium phosphate co-transporter.
    Yamagata M; Ozono K; Hashimoto Y; Miyauchi Y; Kondou H; Michigami T
    J Am Soc Nephrol; 2005 Aug; 16(8):2338-45. PubMed ID: 15976002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement.
    Lötscher M; Scarpetta Y; Levi M; Halaihel N; Wang H; Zajicek HK; Biber J; Murer H; Kaissling B
    J Clin Invest; 1999 Aug; 104(4):483-94. PubMed ID: 10449440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal sulfate metabolism in vitamin D-deficient rats.
    Fernandes I; Hampson G; Cahours X; Morin P; Coureau C; Couette S; Prie D; Biber J; Murer H; Friedlander G; Silve C
    J Clin Invest; 1997 Nov; 100(9):2196-203. PubMed ID: 9410896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of a farnesylated protein with renal type IIa Na/Pi co-transporter in response to parathyroid hormone and dietary phosphate.
    Ito M; Iidawa S; Izuka M; Haito S; Segawa H; Kuwahata M; Ohkido I; Ohno H; Miyamoto K
    Biochem J; 2004 Feb; 377(Pt 3):607-16. PubMed ID: 14558883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.