BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8559780)

  • 1. Light-dark and food restriction cycles in sea bass: effect of conflicting zeitgebers on demand-feeding rhythms.
    Sánchez-Vázquez FJ; Zamora S; Madrid JA
    Physiol Behav; 1995 Oct; 58(4):705-14. PubMed ID: 8559780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythms of feeding activity in sea bass, Dicentrarchus labrax L.: dual phasing capacity of diel demand-feeding pattern.
    Sánchez-Vázquez FJ; Madrid JA; Zamora S
    J Biol Rhythms; 1995 Sep; 10(3):256-66. PubMed ID: 7488763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted food access and light-dark: impact of conflicting zeitgebers on circadian rhythms of the rabbit.
    Jilge B; Stähle H
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R708-15. PubMed ID: 8476114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of restricted feeding schedule on seasonal shifting of daily demand-feeding pattern and food anticipatory activity in European sea bass (Dicentrarchus labrax L.).
    Azzaydi M; Rubio VC; López FJ; Sánchez-Vázquez FJ; Zamora S; Madrid JA
    Chronobiol Int; 2007; 24(5):859-74. PubMed ID: 17994342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions.
    Lax P; Zamora S; Madrid JA
    Chronobiol Int; 1999 May; 16(3):281-91. PubMed ID: 10373098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjustment of house sparrow circadian rhythms to a simultaneously applied light and food zeitgeber.
    Hau M; Gwinner E
    Physiol Behav; 1997 Nov; 62(5):973-81. PubMed ID: 9333189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vasopressin in modulating circadian rhythm responses to phase shifts.
    Murphy HM; Wideman CH; Nadzam GR
    Peptides; 1998; 19(7):1191-208. PubMed ID: 9786169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of periodical water current on the phasing of demand feeding rhythms in sea bass (Dicentrarchus labrax L.).
    Valverde JC; Mendiola López P; de Costa Ruiz J
    Physiol Behav; 2005 Jul; 85(4):394-403. PubMed ID: 15985274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique food-entrained circadian rhythm in cysteine414-alanine mutant mCRY1 transgenic mice.
    Okano S; Yasui A; Hayasaka K; Nakajima O
    Sleep Biol Rhythms; 2016; 14():261-269. PubMed ID: 27441028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demand-feeding rhythm in rainbow trout and European catfish. Synchronisation by photoperiod and food availability.
    Bolliet V; Aranda A; Boujard T
    Physiol Behav; 2001 Jul; 73(4):625-33. PubMed ID: 11495668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily restricted feeding effects on the circadian activity rhythms of the stripe-faced dunnart, Sminthopsis macroura.
    Kennedy GA; Coleman GJ; Armstrong SM
    J Biol Rhythms; 1996 Sep; 11(3):188-95. PubMed ID: 8872591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annual rhythms of demand-feeding activity in sea bass: evidence of a seasonal phase inversion of the diel feeding pattern.
    Sánchez-Vázquez FJ; Azzaydi M; Martínez FJ; Zamora S; Madrid JA
    Chronobiol Int; 1998 Nov; 15(6):607-22. PubMed ID: 9844749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food- and light-entrainable oscillators control feeding and locomotor activity rhythms, respectively, in the Japanese catfish, Plotosus japonicus.
    Kasai M; Kiyohara S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Dec; 196(12):901-12. PubMed ID: 20725728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle.
    Kalsbeek A; Barassin S; van Heerikhuize JJ; van der Vliet J; Buijs RM
    J Biol Rhythms; 2000 Feb; 15(1):57-66. PubMed ID: 10677017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: dual and independent phasing.
    Sánchez-Vázquez FJ; Madrid JA; Zamora S; Iigo M; Tabata M
    Physiol Behav; 1996 Aug; 60(2):665-74. PubMed ID: 8840933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food as a circadian Zeitgeber for house sparrows: the effect of different food access durations.
    Hau M; Gwinner E
    J Biol Rhythms; 1996 Sep; 11(3):196-207. PubMed ID: 8872592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.