These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8559780)

  • 21. Memory for feeding time: possible dependence on coupled circadian oscillators.
    Rosenwasser AM; Pelchat RJ; Adler NT
    Physiol Behav; 1984 Jan; 32(1):25-30. PubMed ID: 6718530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod.
    Brinkhof MW; Daan S; Strubbe JH
    Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Daily rhythms of blood glucose differ in diurnal and nocturnal European sea bass (Dicentrarchus labrax L.) undergoing seasonal phase inversions.
    del Pozo A; Vera LM; Montoya A; Sánchez-Vázquez FJ
    Fish Physiol Biochem; 2013 Jun; 39(3):695-9. PubMed ID: 23053614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of food-entrained circadian rhythms in rats during long-term exposure to constant light.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Chronobiol Int; 1990; 7(5-6):383-91. PubMed ID: 2097071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata).
    López-Olmeda JF; Montoya A; Oliveira C; Sánchez-Vázquez FJ
    Chronobiol Int; 2009 Oct; 26(7):1389-408. PubMed ID: 19916838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Food entrainment to 4-h T cycles in rats kept under constant lighting conditions.
    Lax P; Zamora S; Madrid JA
    Physiol Behav; 1999 Aug; 67(2):307-14. PubMed ID: 10477063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Food availability affects circadian clock-controlled activity and Zugunruhe in the night migratory male blackheaded bunting (Emberiza melanocephala).
    Singh J; Rastogi A; Rani S; Kumar V
    Chronobiol Int; 2012 Feb; 29(1):15-25. PubMed ID: 22217097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restricted feeding entrains circadian wheel-running activity rhythms of the kowari.
    Kennedy GA; Coleman GJ; Armstrong SM
    Am J Physiol; 1991 Oct; 261(4 Pt 2):R819-27. PubMed ID: 1928428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule.
    Walcott EC; Tate BA
    Physiol Behav; 1996 Nov; 60(5):1205-8. PubMed ID: 8916172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei.
    O'Reilly H; Armstrong SM; Coleman GJ
    Physiol Behav; 1986 Oct; 38(4):471-6. PubMed ID: 3823161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian rhythms of gene expression of lipid metabolism in Gilthead Sea bream liver: synchronisation to light and feeding time.
    Paredes JF; Vera LM; Martinez-Lopez FJ; Navarro I; Sánchez Vázquez FJ
    Chronobiol Int; 2014 Jun; 31(5):613-26. PubMed ID: 24517141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Daily rhythms of clock gene expression, glycaemia and digestive physiology in diurnal/nocturnal European seabass.
    del Pozo A; Montoya A; Vera LM; Sánchez-Vázquez FJ
    Physiol Behav; 2012 Jun; 106(4):446-50. PubMed ID: 22429903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei).
    Santos ADA; López-Olmeda JF; Sánchez-Vázquez FJ; Fortes-Silva R
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Sep; 199():54-61. PubMed ID: 27155052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat.
    Mistlberger RE; Antle MC
    Brain Res; 1999 Sep; 842(1):73-83. PubMed ID: 10526097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of dietary lipid content on circadian rhythm of feeding activity in European sea bass.
    Boujard T; Gélineau A; Corraze G; Kaushik S; Gasset E; Coves D; Dutto G
    Physiol Behav; 2000 Mar; 68(5):683-9. PubMed ID: 10764898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling between light- and food-entrainable circadian oscillators in pigeons.
    Rashotte ME; Stephan FK
    Physiol Behav; 1996; 59(4-5):1005-10. PubMed ID: 8778836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of synchronization of primate circadian rhythms by light and food.
    Sulzman FM; Fuller CA; Moore-Ede MC
    Am J Physiol; 1978 Mar; 234(3):R130-5. PubMed ID: 415621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian rhythms of self-feeding and locomotor activity in zebrafish (Danio Rerio).
    del Pozo A; Sánchez-Férez JA; Sánchez-Vázquez FJ
    Chronobiol Int; 2011 Feb; 28(1):39-47. PubMed ID: 21182403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demand-feeding rhythms and feeding-entrainment of locomotor activity rhythms in tench (Tinca tinca).
    Herrero MJ; Pascual M; Madrid JA; Sánchez-Vázquez FJ
    Physiol Behav; 2005 Mar; 84(4):595-605. PubMed ID: 15811395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Daily rhythms in the morphometric parameters of hepatocytes and intestine of the European sea bass (Dicentrarchus labrax): influence of feeding time and hepatic zonation.
    Rodríguez I; Betancor MB; López-Jiménez JÁ; Esteban MÁ; Sánchez-Vázquez FJ; López-Olmeda JF
    J Comp Physiol B; 2021 May; 191(3):503-515. PubMed ID: 33619590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.