These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8559780)

  • 41. Entrainment in calorie-restricted mice: conflicting zeitgebers and free-running conditions.
    Challet E; Solberg LC; Turek FW
    Am J Physiol; 1998 Jun; 274(6):R1751-61. PubMed ID: 9841486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locomotor and feeding activity rhythms in a light-entrained diurnal rodent, Octodon degus.
    García-Allegue R; Lax P; Madariaga AM; Madrid JA
    Am J Physiol; 1999 Aug; 277(2):R523-31. PubMed ID: 10444560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal.
    Rani S; Singh S; Malik S; Singh J; Kumar V
    Chronobiol Int; 2009 May; 26(4):653-65. PubMed ID: 19444747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupling between feeding- and light-entrainable circadian pacemakers in the rat.
    Stephan FK
    Physiol Behav; 1986 Oct; 38(4):537-44. PubMed ID: 3823166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind).
    Villamizar N; Blanco-Vives B; Oliveira C; Dinis MT; Di Rosa V; Negrini P; Bertolucci C; Sánchez-Vázquez FJ
    Chronobiol Int; 2013 Aug; 30(7):889-900. PubMed ID: 23697903
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain.
    Sanchez JA; Sanchez-Vazquez FJ
    Chronobiol Int; 2009 Aug; 26(6):1120-35. PubMed ID: 19731109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The interaction of vasopressin and the photic oscillator in circadian rhythms.
    Murphy HM; Wideman CH; Nadzam GR
    Peptides; 1996; 17(3):467-75. PubMed ID: 8735974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of scheduled food and water access on circadian rhythms of hamsters in constant light, dark, and light:dark.
    Mistlberger RE
    Physiol Behav; 1993 Mar; 53(3):509-16. PubMed ID: 8451316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.
    López-Olmeda JF; Sánchez-Vázquez FJ
    Chronobiol Int; 2009 Feb; 26(2):200-18. PubMed ID: 19212837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous recording of uneaten food pellets and demand-feeding activity: a new approach to studying feeding rhythms in fish.
    Madrid JA; Azzaydi M; Zamora S; Sánchez-Vázquez FJ
    Physiol Behav; 1997 Oct; 62(4):689-95. PubMed ID: 9284485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifactorial regulation of daily rhythms in expression of the metabolically responsive gene spot14 in the mouse liver.
    Ishihara A; Matsumoto E; Horikawa K; Kudo T; Sakao E; Nemoto A; Iwase K; Sugiyama H; Tamura Y; Shibata S; Takiguchi M
    J Biol Rhythms; 2007 Aug; 22(4):324-34. PubMed ID: 17660449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissociation between adipose tissue signals, behavior and the food-entrained oscillator.
    Martínez-Merlos MT; Angeles-Castellanos M; Díaz-Muñoz M; Aguilar-Roblero R; Mendoza J; Escobar C
    J Endocrinol; 2004 Apr; 181(1):53-63. PubMed ID: 15072566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Restricted feeding facilitates time-place learning in adult rats.
    Lukoyanov NV; Pereira PA; Mesquita RM; Andrade JP
    Behav Brain Res; 2002 Aug; 134(1-2):283-90. PubMed ID: 12191815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase-shifting the light-dark cycle resets the food-entrainable circadian pacemaker.
    Ottenweller JE; Tapp WN; Natelson BH
    Am J Physiol; 1990 Apr; 258(4 Pt 2):R994-1000. PubMed ID: 2331040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker.
    Mieda M; Williams SC; Richardson JA; Tanaka K; Yanagisawa M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12150-5. PubMed ID: 16880388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats.
    Strubbe JH; Spiteri NJ; Alingh Prins AJ
    Physiol Behav; 1986; 36(4):647-51. PubMed ID: 3714837
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of synchronization of circadian corticosteroid rhythms by photoperiod and food.
    Krieger DT; Hauser H
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1577-81. PubMed ID: 274743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of enzyme immunoassays for 3,5,3'-triiodo-L-thyronine and L-thyroxine: time-course studies on the effect of food deprivation on plasma thyroid hormones in two marine teleosts, sea bass (Dicentrarchus labrax L.) and sea bream (Sparus aurata L.).
    Cerdá-Reverter JM; Zanuy S; Carrillo M; Kah O
    Gen Comp Endocrinol; 1996 Sep; 103(3):290-300. PubMed ID: 8812399
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat.
    Jansen HT; Sergeeva A; Stark G; Sorg BA
    Chronobiol Int; 2012 May; 29(4):454-68. PubMed ID: 22475541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.