BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 8560466)

  • 1. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):131-7. PubMed ID: 8560466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tissue composition-based algorithm for predicting tissue:air partition coefficients of organic chemicals.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):126-30. PubMed ID: 8560465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm for predicting tissue: blood partition coefficients of organic chemicals from n-octanol: water partition coefficient data.
    Poulin P; Krishnan K
    J Toxicol Environ Health; 1995 Sep; 46(1):117-29. PubMed ID: 7666490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration dependency of rat blood: air partition coefficients of some volatile organic chemicals.
    Béliveau M; Krishnan K
    J Toxicol Environ Health A; 2000 Jul; 60(6):377-89. PubMed ID: 10933755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals.
    Peyret T; Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 2010 Dec; 249(3):197-207. PubMed ID: 20869379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of algorithms predicting blood:air and tissue:blood partition coefficients from solvent partition coefficients for prevalent components of JP-8 jet fuel.
    Sterner TR; Goodyear CD; Robinson PJ; Mattie DR; Burton GA
    J Toxicol Environ Health A; 2006 Aug; 69(15):1441-79. PubMed ID: 16766479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical relations predicting human and rat tissue:air partition coefficients of volatile organic compounds.
    Meulenberg CJ; Vijverberg HP
    Toxicol Appl Pharmacol; 2000 Jun; 165(3):206-16. PubMed ID: 10873711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals.
    Béliveau M; Lipscomb J; Tardif R; Krishnan K
    Chem Res Toxicol; 2005 Mar; 18(3):475-85. PubMed ID: 15777087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and decay of volatile organic compounds at environmental concentrations: application of a four-compartment model to a chamber study of five human subjects.
    Wallace LA; Nelson WC; Pellizzari ED; Raymer JH
    J Expo Anal Environ Epidemiol; 1997; 7(2):141-63. PubMed ID: 9185009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting age-appropriate pharmacokinetics of six volatile organic compounds in the rat utilizing physiologically based pharmacokinetic modeling.
    Rodriguez CE; Mahle DA; Gearhart JM; Mattie DR; Lipscomb JC; Cook RS; Barton HA
    Toxicol Sci; 2007 Jul; 98(1):43-56. PubMed ID: 17426107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the biological partitioning behavior of n-alkanes and n-alkanols in causing anesthetic effects.
    Hau KM; Connell DW; Richardson BJ
    Regul Toxicol Pharmacol; 2002 Apr; 35(2 Pt 1):273-9. PubMed ID: 12052011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biologically-based algorithm for predicting human tissue: blood partition coefficients of organic chemicals.
    Poulin P; Krishnan K
    Hum Exp Toxicol; 1995 Mar; 14(3):273-80. PubMed ID: 7779458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure-based prediction of human abdominal skin permeability coefficients for several organic compounds.
    Poulin P; Krishnan K
    J Toxicol Environ Health A; 2001 Feb; 62(3):143-59. PubMed ID: 11212942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated QSPR-PBPK modelling approach for in vitro-in vivo extrapolation of pharmacokinetics in rats.
    Kamgang E; Peyret T; Krishnan K
    SAR QSAR Environ Res; 2008; 19(7-8):669-80. PubMed ID: 19061083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting blood:air partition coefficients using basic physicochemical properties.
    Buist HE; Wit-Bos Ld; Bouwman T; Vaes WH
    Regul Toxicol Pharmacol; 2012 Feb; 62(1):23-8. PubMed ID: 22178169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of rat blood:air partition coefficients of volatile organic chemicals using reconstituted mixtures of blood components.
    Béliveau M; Krishnan K
    Toxicol Lett; 2000 Aug; 116(3):183-8. PubMed ID: 10996479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat.
    Price K; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):107-28. PubMed ID: 21391144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structure-based prediction of the steady-state blood concentrations of inhaled organics in rats.
    Béliveau M; Krishnan K
    Toxicol Mech Methods; 2005; 15(5):361-6. PubMed ID: 20021057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of models for the estimation of biological partition coefficients.
    Payne MP; Kenny LC
    J Toxicol Environ Health A; 2002 Jul; 65(13):897-931. PubMed ID: 12133236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs.
    Abraham MH; Ibrahim A; Acree WE
    Eur J Med Chem; 2007 Jun; 42(6):743-51. PubMed ID: 17292513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.