BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 8561463)

  • 1. CO dehydrogenase.
    Ferry JG
    Annu Rev Microbiol; 1995; 49():305-33. PubMed ID: 8561463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases.
    Jeoung JH; Fesseler J; Goetzl S; Dobbek H
    Met Ions Life Sci; 2014; 14():37-69. PubMed ID: 25416390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum.
    Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and properties of enzymes that activate and produce carbon monoxide.
    Burton R; Can M; Esckilsen D; Wiley S; Ragsdale SW
    Methods Enzymol; 2018; 613():297-324. PubMed ID: 30509471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methylnickel intermediate in a bimetallic mechanism of acetyl-coenzyme A synthesis by anaerobic bacteria.
    Kumar M; Qiu D; Spiro TG; Ragsdale SW
    Science; 1995 Oct; 270(5236):628-30. PubMed ID: 7570019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum.
    Ensign SA; Bonam D; Ludden PW
    Biochemistry; 1989 Jun; 28(12):4968-73. PubMed ID: 2504284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum.
    Lu WP; Harder SR; Ragsdale SW
    J Biol Chem; 1990 Feb; 265(6):3124-33. PubMed ID: 2303444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme.
    Maynard EL; Lindahl PA
    Biochemistry; 2001 Nov; 40(44):13262-7. PubMed ID: 11683635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry.
    Jablonski PE; Lu WP; Ragsdale SW; Ferry JG
    J Biol Chem; 1993 Jan; 268(1):325-9. PubMed ID: 8380157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Monoxide Dehydrogenases.
    Jeoung JH; Martins BM; Dobbek H
    Methods Mol Biol; 2019; 1876():37-54. PubMed ID: 30317473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Something special about CO-dependent CO
    Xavier JC; Preiner M; Martin WF
    FEBS J; 2018 Nov; 285(22):4181-4195. PubMed ID: 30240136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life with carbon monoxide.
    Ragsdale SW
    Crit Rev Biochem Mol Biol; 2004; 39(3):165-95. PubMed ID: 15596550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life on the fringe: microbial adaptation to growth on carbon monoxide.
    Robb FT; Techtmann SM
    F1000Res; 2018; 7():. PubMed ID: 30647903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase-corrinoid enzyme complex: stepwise reduction of iron-sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA.
    Grahame DA
    Biochemistry; 1993 Oct; 32(40):10786-93. PubMed ID: 8399227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel in subunit beta of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens. Catalytic properties and evidence for a binuclear Ni-Ni site.
    Gencic S; Grahame DA
    J Biol Chem; 2003 Feb; 278(8):6101-10. PubMed ID: 12464601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps.
    Roberts JR; Lu WP; Ragsdale SW
    J Bacteriol; 1992 Jul; 174(14):4667-76. PubMed ID: 1624454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster.
    Dobbek H; Svetlitchnyi V; Gremer L; Huber R; Meyer O
    Science; 2001 Aug; 293(5533):1281-5. PubMed ID: 11509720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.