These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 8561464)

  • 41. Mechanism of Mo-dependent nitrogenase.
    Seefeldt LC; Hoffman BM; Dean DR
    Annu Rev Biochem; 2009; 78():701-22. PubMed ID: 19489731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron paramagnetic resonance analysis of different Azotobacter vinelandii nitrogenase MoFe-protein conformations generated during enzyme turnover: evidence for S = 3/2 spin states from reduced MoFe-protein intermediates.
    Fisher K; Newton WE; Lowe DJ
    Biochemistry; 2001 Mar; 40(11):3333-9. PubMed ID: 11258953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The first glimpse of a complex of nitrogenase component proteins by solution X-ray scattering: conformation of the electron transfer transition state complex of Klebsiella pneumoniae nitrogenase.
    Grossman JG; Hasnain SS; Yousafzai FK; Smith BE; Eady RR
    J Mol Biol; 1997 Mar; 266(4):642-8. PubMed ID: 9102457
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC
    Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrogenase complexes: multiple docking sites for a nucleotide switch protein.
    Tezcan FA; Kaiser JT; Mustafi D; Walton MY; Howard JB; Rees DC
    Science; 2005 Aug; 309(5739):1377-80. PubMed ID: 16123301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation.
    Howard JB; Rees DC
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17088-93. PubMed ID: 17088547
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii.
    Georgiadis MM; Komiya H; Chakrabarti P; Woo D; Kornuc JJ; Rees DC
    Science; 1992 Sep; 257(5077):1653-9. PubMed ID: 1529353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of iron-molybdenum cofactor-deficient nitrogenase MoFe proteins by X-ray absorption spectroscopy: implications for P-cluster biosynthesis.
    Corbett MC; Hu Y; Naderi F; Ribbe MW; Hedman B; Hodgson KO
    J Biol Chem; 2004 Jul; 279(27):28276-82. PubMed ID: 15102840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for a synergistic salt-protein interaction -- complex patterns of activation vs. inhibition of nitrogenase by salt.
    Wilson PE; Nyborg AC; Kenealey J; Lowery TJ; Crawford K; King CR; Engan AJ; Johnson JL; Watt GD
    Biophys Chem; 2006 Aug; 122(3):184-94. PubMed ID: 16603308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrocatalytic CO
    Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis of biological nitrogen fixation.
    Rees DC; Akif Tezcan F; Haynes CA; Walton MY; Andrade S; Einsle O; Howard JB
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):971-84; discussion 1035-40. PubMed ID: 15901546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical experiments define potentials associated with binding of substrates and inhibitors to nitrogenase MoFe protein.
    Chen T; Ash PA; Seefeldt LC; Vincent KA
    Faraday Discuss; 2023 Jul; 243(0):270-286. PubMed ID: 37060162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis.
    Jacobs D; Watt GD
    Biochemistry; 2013 Jul; 52(28):4791-9. PubMed ID: 23815521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of the MoFe protein alpha-125Phe and beta-125Phe residues in Azotobacter vinelandii MoFe protein-Fe protein interaction.
    Christiansen J; Chan JM; Seefeldt LC; Dean DR
    J Inorg Biochem; 2000 Jul; 80(3-4):195-204. PubMed ID: 11001089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic activities of NifEN: implications for nitrogenase evolution and mechanism.
    Hu Y; Yoshizawa JM; Fay AW; Lee CC; Wiig JA; Ribbe MW
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16962-6. PubMed ID: 19805110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stereospecificity of acetylene reduction catalyzed by nitrogenase.
    Benton PM; Christiansen J; Dean DR; Seefeldt LC
    J Am Chem Soc; 2001 Mar; 123(9):1822-7. PubMed ID: 11456800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 14N electron spin-echo envelope modulation of the S = 3/2 spin system of the Azotobacter vinelandii nitrogenase iron-molybdenum cofactor.
    Lee HI; Thrasher KS; Dean DR; Newton WE; Hoffman BM
    Biochemistry; 1998 Sep; 37(38):13370-8. PubMed ID: 9748344
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular insights into nitrogenase FeMoco insertion--the role of His 274 and His 451 of MoFe protein alpha subunit.
    Fay AW; Hu Y; Schmid B; Ribbe MW
    J Inorg Biochem; 2007 Nov; 101(11-12):1630-41. PubMed ID: 17521738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.