BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 8561787)

  • 1. Enzymatic synthesis of the N-glycosidic bond by beta-aspartylation of glycosylamines.
    Mononen I; Ivanov GI; Stoineva IB; Noronkoski T; Petkov DD
    Biochem Biophys Res Commun; 1996 Jan; 218(2):510-3. PubMed ID: 8561787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosylasparaginase-catalyzed synthesis and hydrolysis of beta-aspartyl peptides.
    Noronkoski T; Stoineva IB; Ivanov IP; Petkov DD; Mononen I
    J Biol Chem; 1998 Oct; 273(41):26295-7. PubMed ID: 9756857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted reaction of glycosylamine with aspartic acid.
    Real-Fernández F; Nuti F; Bonache MA; Boccalini M; Chimichi S; Chelli M; Papini AM
    Amino Acids; 2010 Jul; 39(2):599-604. PubMed ID: 20130939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylasparaginase activity requires the alpha-carboxyl group, but not the alpha-amino group, on N(4)-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine.
    Risley JM; Huang DH; Kaylor JJ; Malik JJ; Xia YQ; York WM
    Arch Biochem Biophys; 2001 Jul; 391(2):165-70. PubMed ID: 11437347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorometric assay for glycosylasparaginase activity and detection of aspartylglycosaminuria.
    Mononen IT; Kaartinen VM; Williams JC
    Anal Biochem; 1993 Feb; 208(2):372-4. PubMed ID: 8452235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity and reaction mechanism of human glycoasparaginase. The N-glycosidic linkage of various glycoasparagines is cleaved through a reaction mechanism similar to L-asparaginase.
    Kaartinen V; Mononen T; Laatikainen R; Mononen I
    J Biol Chem; 1992 Apr; 267(10):6855-8. PubMed ID: 1551892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of L-fucose attached alpha 1-->6 to the asparagine-linked N-acetylglucosamine on the hydrolysis of the N-glycosidic linkage by human glycosylasparaginase.
    Noronkoski T; Mononen I
    Glycobiology; 1997 Mar; 7(2):217-20. PubMed ID: 9134428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant human glycosylasparaginase catalyzes hydrolysis of L-asparagine.
    Noronkoski T; Stoineva IB; Petkov DD; Mononen I
    FEBS Lett; 1997 Jul; 412(1):149-52. PubMed ID: 9257709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acylation is rate-limiting in glycosylasparaginase-catalyzed hydrolysis of N4-(4'-substituted phenyl)-L-asparagines.
    Du W; Risley JM
    Org Biomol Chem; 2003 Jun; 1(11):1900-5. PubMed ID: 12945771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylasparaginase inhibition studies: competitive inhibitors, transition state mimics, noncompetitive inhibitors.
    Risley JM; Huang DH; Kaylor JJ; Malik JJ; Xia YQ
    J Enzyme Inhib; 2001; 16(3):269-74. PubMed ID: 11697047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a mutant glycosylasparaginase shedding light on aspartylglycosaminuria-causing mechanism as well as on hydrolysis of non-chitobiose substrate.
    Pande S; Lakshminarasimhan D; Guo HC
    Mol Genet Metab; 2017 Jun; 121(2):150-156. PubMed ID: 28457719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.
    Einbu A; Vårum KM
    Biomacromolecules; 2007 Jan; 8(1):309-14. PubMed ID: 17206822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual role for an aspartic acid in glycosylasparaginase autoproteolysis.
    Qian X; Guan C; Guo HC
    Structure; 2003 Aug; 11(8):997-1003. PubMed ID: 12906830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic snapshot of a productive glycosylasparaginase-substrate complex.
    Wang Y; Guo HC
    J Mol Biol; 2007 Feb; 366(1):82-92. PubMed ID: 17157318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of chitin and its hydrolysis to GlcNAc and GlcN.
    Einbu A; Vårum KM
    Biomacromolecules; 2008 Jul; 9(7):1870-5. PubMed ID: 18540645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants.
    Cetinbaş N; Macauley MS; Stubbs KA; Drapala R; Vocadlo DJ
    Biochemistry; 2006 Mar; 45(11):3835-44. PubMed ID: 16533067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540.
    Prag G; Papanikolau Y; Tavlas G; Vorgias CE; Petratos K; Oppenheim AB
    J Mol Biol; 2000 Jul; 300(3):611-7. PubMed ID: 10884356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High level of aspartic acid-bond isomerization during the synthesis of an N-linked tau glycopeptide.
    Hoffmann R; Craik DJ; Bokonyi K; Varga I; Otvos L
    J Pept Sci; 1999 Oct; 5(10):442-56. PubMed ID: 10580643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and crystallization of precursors and autoprocessed enzymes of Flavobacterium glycosylasparaginase: an N-terminal nucleophile hydrolase.
    Cui T; Liao PH; Guan C; Guo HC
    Acta Crystallogr D Biol Crystallogr; 1999 Nov; 55(Pt 11):1961-4. PubMed ID: 10531509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartylglycosaminuria: protein chemistry and molecular biology of the most common lysosomal storage disorder of glycoprotein degradation.
    Mononen I; Fisher KJ; Kaartinen V; Aronson NN
    FASEB J; 1993 Oct; 7(13):1247-56. PubMed ID: 8405810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.