These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8562089)

  • 1. Generation of cerebellar interneurons from dividing progenitors in white matter.
    Zhang L; Goldman JE
    Neuron; 1996 Jan; 16(1):47-54. PubMed ID: 8562089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of cerebellar Golgi neurons from the external granular layer: evidence from explantation of external granule cells in vivo.
    Hausmann B; Mangold U; Sievers J; Berry M
    J Comp Neurol; 1985 Feb; 232(4):511-22. PubMed ID: 3920289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum.
    Zhang L; Goldman JE
    J Comp Neurol; 1996 Jul; 370(4):536-50. PubMed ID: 8807453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum.
    Maricich SM; Herrup K
    J Neurobiol; 1999 Nov; 41(2):281-94. PubMed ID: 10512984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of stellate and basket cells and their apoptosis in mouse cerebellar cortex.
    Yamanaka H; Yanagawa Y; Obata K
    Neurosci Res; 2004 Sep; 50(1):13-22. PubMed ID: 15288494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons.
    Weisheit G; Gliem M; Endl E; Pfeffer PL; Busslinger M; Schilling K
    Eur J Neurosci; 2006 Jul; 24(2):466-78. PubMed ID: 16903854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum.
    Geurts FJ; Timmermans J; Shigemoto R; De Schutter E
    Neuroscience; 2001; 104(2):499-512. PubMed ID: 11377850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum.
    Fujita S
    J Cell Biol; 1967 Feb; 32(2):277-87. PubMed ID: 10976221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex vivo imaging of postnatal cerebellar granule cell migration using confocal macroscopy.
    Bénard M; Lebon A; Komuro H; Vaudry D; Galas L
    J Vis Exp; 2015 May; (99):e52810. PubMed ID: 25992599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter.
    Englund C; Kowalczyk T; Daza RA; Dagan A; Lau C; Rose MF; Hevner RF
    J Neurosci; 2006 Sep; 26(36):9184-95. PubMed ID: 16957075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular migration in the postnatal rat cerebellar cortex: confocal-infrared microscopy and the rapid Golgi method.
    Liesi P; Akinshola E; Matsuba K; Lange K; Morest K
    J Neurosci Res; 2003 May; 72(3):290-302. PubMed ID: 12692896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations.
    Jankovski A; Rossi F; Sotelo C
    Eur J Neurosci; 1996 Nov; 8(11):2308-19. PubMed ID: 8950095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal differentiation of unipolar brush cells and mossy fiber-unipolar brush cell synapses in rat cerebellum.
    Morin F; Diño MR; Mugnaini E
    Neuroscience; 2001; 104(4):1127-39. PubMed ID: 11457596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of mGluR1alpha and SMI 311 immunoreactive Lugaro cells in the kitten cerebellum.
    Víg J; Takács J; Vastagh C; Baldauf Z; Veisenberger E; Hámori J
    J Neurocytol; 2003 Mar; 32(3):217-27. PubMed ID: 14724385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The treasury of the commons: making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex.
    Schilling K; Oberdick J
    Cerebellum; 2009 Dec; 8(4):477-89. PubMed ID: 19554387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological development and neurochemical differentiation of cerebellar inhibitory interneurons in microexplant cultures.
    Koscheck T; Weyer A; Schilling RL; Schilling K
    Neuroscience; 2003; 116(4):973-84. PubMed ID: 12617938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of unipolar brush cells in the cerebellar cortex of cat.
    Takács J; Borostyánkõi ZA; Veisenberger E; Vastagh C; Víg J; Görcs TJ; Hámori J
    J Neurosci Res; 2000 Jul; 61(1):107-15. PubMed ID: 10861806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal subventricular zone progenitors give rise not only to granular and periglomerular interneurons but also to interneurons in the external plexiform layer of the rat olfactory bulb.
    Yang Z
    J Comp Neurol; 2008 Jan; 506(2):347-58. PubMed ID: 18022946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical-layer-specific effects of PACAP and tPA on interneuron migration during post-natal development of the cerebellum.
    Raoult E; Bénard M; Komuro H; Lebon A; Vivien D; Fournier A; Vaudry H; Vaudry D; Galas L
    J Neurochem; 2014 Jul; 130(2):241-54. PubMed ID: 24646324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream.
    Smith CM; Luskin MB
    Dev Dyn; 1998 Oct; 213(2):220-7. PubMed ID: 9786422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.