BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 8562567)

  • 1. The substrate-specific impairment of oxidative phosphorylation in liver mitochondria from high-protein-fed chickens.
    Toyomizu M; Tanaka M; Kojima M; Ishibashi T
    Br J Nutr; 1995 Dec; 74(6):797-806. PubMed ID: 8562567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of oxidative phosphorylation in liver mitochondria of chickens fed on high-protein diet.
    Tanaka M; Ishibashi T; Toyomizu M
    Br Poult Sci; 1995 Mar; 36(1):143-54. PubMed ID: 7614018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue- and substrate-dependent responses of oxidative phosphorylation to dietary protein level in chicks.
    Tanaka M; Ishibashi T; Okamoto K; Toyomizu M
    Br J Nutr; 1993 Sep; 70(2):459-69. PubMed ID: 8260473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary protein level alters oxidative phosphorylation in heart and liver mitochondria of chicks.
    Toyomizu M; Kirihara D; Tanaka M; Hayashi K; Tomita Y
    Br J Nutr; 1992 Jul; 68(1):89-99. PubMed ID: 1390619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of malate in regulating the rate of mitochondrial respiration in vitro].
    Vovyleva-Guarriero VB; Wehbie RS; Muscatello U; Lardi GA
    Biokhimiia; 1991 Mar; 56(3):542-51. PubMed ID: 1883909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of oxidative phosphorylation in AS-30D hepatoma mitochondria.
    López-Gómez FJ; Torres-Márquez ME; Moreno-Sánchez R
    Int J Biochem; 1993 Mar; 25(3):373-7. PubMed ID: 8096469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP; Balaban RS
    Biochim Biophys Acta; 1987 Oct; 893(3):398-408. PubMed ID: 2888484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ammonium chloride-induced acidosis on oxidative metabolism in liver mitochondria of chicks.
    Toyomizu M; Yamahira S; Tanaka M; Akiba Y
    Br Poult Sci; 1999 Sep; 40(4):541-4. PubMed ID: 10579415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of diet composition on serum triiodothyronine (T3) concentration, hepatic mitochondrial metabolism and shuttle system activity in rats.
    Tyzbir RS; Kunin AS; Sims NM; Danforth E
    J Nutr; 1981 Feb; 111(2):252-9. PubMed ID: 6257866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial function following chronic ethanol treatment: effect of diet.
    Wahid S; Khanna JM; Carmichael FJ; Israel Y
    Res Commun Chem Pathol Pharmacol; 1980 Dec; 30(3):477-91. PubMed ID: 7196064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Participation of SH-groups in regulating oxidative phosphorylation by malate and palmitate-uncoupled respiration in liver mitochondria].
    Samartsev VN; Zeldi IP
    Biokhimiia; 1995 Apr; 60(4):635-43. PubMed ID: 7779985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition of gluconeogenesis by gatifloxacin may contribute to its hypoglycaemic action.
    Drozak J; Miecznik A; Jarzyna R; Bryla J
    Eur J Pharmacol; 2008 Oct; 594(1-3):39-43. PubMed ID: 18706903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO) Mouse Brain.
    Kayser EB; Sedensky MM; Morgan PG
    PLoS One; 2016; 11(1):e0148219. PubMed ID: 26824698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dietary protein and fat level on oxidative phosphorylation in rat heart mitochondria.
    Toyomizu M; Clandinin MT
    Br J Nutr; 1993 Jan; 69(1):97-102. PubMed ID: 8457540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of mitochondrial membrane fatty acid composition on proton leak and H2O2 production in liver.
    Ramsey JJ; Harper ME; Humble SJ; Koomson EK; Ram JJ; Bevilacqua L; Hagopian K
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jan; 140(1):99-108. PubMed ID: 15621515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [5-Alkyl(C19-C25) resorcinols as regulators of succinate and NAD-dependent substrate oxidation by mitochondria].
    Nenashev VA; Pridachina NN; Pronevich LA; Batrakov SG
    Biokhimiia; 1989 May; 54(5):784-7. PubMed ID: 2758080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.
    Schönfeld P; Bohnensack R
    Biomed Biochim Acta; 1991; 50(7):841-9. PubMed ID: 1759963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.
    Dietzen DJ; Davis EJ
    Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.