These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 8562787)

  • 21. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated polymer biodegradation of risperidone poly(D, L-lactide-co-glycolide) microspheres.
    Selmin F; Blasi P; DeLuca PP
    AAPS PharmSciTech; 2012 Dec; 13(4):1465-72. PubMed ID: 23090111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of biodegradable poly(D,L-lactide-co-glycolide) polymers and microspheres.
    Hausberger AG; DeLuca PP
    J Pharm Biomed Anal; 1995 May; 13(6):747-60. PubMed ID: 7669829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Donepezil accelerates the release of PLGA microparticles via catalyzing the polymer degradation regardless of the end groups and molecular weights.
    Quan P; Guo W; LinYang ; Cun D; Yang M
    Int J Pharm; 2023 Feb; 632():122566. PubMed ID: 36586633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro and in vivo degradation studies of a novel linear copolymer of lactide and ethylphosphate.
    Chaubal MV; Su G; Spicer E; Dang W; Branham KE; English JP; Zhao Z
    J Biomater Sci Polym Ed; 2003; 14(1):45-61. PubMed ID: 12635770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres.
    Carrasquillo KG; Ricker JA; Rigas IK; Miller JW; Gragoudas ES; Adamis AP
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):290-9. PubMed ID: 12506087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH and osmotic pressure inside biodegradable microspheres during erosion.
    Brunner A; Mäder K; Göpferich A
    Pharm Res; 1999 Jun; 16(6):847-53. PubMed ID: 10397604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphological changes in degrading PLGA and P(DL)LA microspheres: implications for the design of controlled release systems.
    Viswanathan NB; Patil SS; Pandit JK; Lele AK; Kulkarni MG; Mashelkar RA
    J Microencapsul; 2001; 18(6):783-800. PubMed ID: 11695641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo.
    Sandor M; Harris J; Mathiowitz E
    Biomaterials; 2002 Nov; 23(22):4413-23. PubMed ID: 12219832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The microclimate pH in poly(D,L-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation.
    Liu Y; Ghassemi AH; Hennink WE; Schwendeman SP
    Biomaterials; 2012 Oct; 33(30):7584-93. PubMed ID: 22819499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro.
    Tracy MA; Ward KL; Firouzabadian L; Wang Y; Dong N; Qian R; Zhang Y
    Biomaterials; 1999 Jun; 20(11):1057-62. PubMed ID: 10378806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissolution, stability, and morphological properties of conventional and multiphase poly(DL-lactic-co-glycolic acid) microspheres containing water-soluble compounds.
    Iwata M; McGinity JW
    Pharm Res; 1993 Aug; 10(8):1219-27. PubMed ID: 8415411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo degradation characteristics of poly(glycerol sebacate).
    Wang Y; Kim YM; Langer R
    J Biomed Mater Res A; 2003 Jul; 66(1):192-7. PubMed ID: 12833446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.
    Yang YY; Shi M; Goh SH; Moochhala SM; Ng S; Heller J
    J Control Release; 2003 Mar; 88(2):201-13. PubMed ID: 12628328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    J Biomater Sci Polym Ed; 1995; 7(1):23-38. PubMed ID: 7662615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of ciclosporin A loaded poly (D,L lactide-co-glycolide) microspheres using modulated temperature differential scanning calorimetry.
    Passerini N; Craig DQ
    J Pharm Pharmacol; 2002 Jul; 54(7):913-9. PubMed ID: 12162709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of polymer degradation in implantable devices. 2. Poly(DL-lactic acid).
    Ali SA; Doherty PJ; Williams DF
    J Biomed Mater Res; 1993 Nov; 27(11):1409-18. PubMed ID: 8263003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytoplasmic delivery of a macromolecular fluorescent probe by poly(d, l-lactic-co-glycolic acid) microspheres.
    Newman KD; Kwon GS; Miller GG; Chlumecky V; Samuel J
    J Biomed Mater Res; 2000 Jun; 50(4):591-7. PubMed ID: 10756318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of gamma-irradiation effects on aciclovir poly(D,L-lactic-co-glycolic) acid microspheres for intravitreal administration.
    Martínez-Sancho C; Herrero-Vanrell R; Negro S
    J Control Release; 2004 Sep; 99(1):41-52. PubMed ID: 15342179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.