These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8562796)

  • 1. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes.
    Begley CT; Doherty MJ; Mollan RA; Wilson DJ
    Biomaterials; 1995 Oct; 16(15):1181-5. PubMed ID: 8562796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The culture of human osteoblasts upon bone graft substitutes.
    Begley CT; Doherty MJ; Hankey DP; Wilson DJ
    Bone; 1993; 14(4):661-6. PubMed ID: 8274310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural coral exoskeleton as a bone graft substitute: a review.
    Demers C; Hamdy CR; Corsi K; Chellat F; Tabrizian M; Yahia L
    Biomed Mater Eng; 2002; 12(1):15-35. PubMed ID: 11847406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.
    Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C
    J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue response to composite ceramic hydroxyapatite/demineralized bone implants.
    Pettis GY; Kaban LB; Glowacki J
    J Oral Maxillofac Surg; 1990 Oct; 48(10):1068-74. PubMed ID: 2170602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts.
    Doherty MJ; Schlag G; Schwarz N; Mollan RA; Nolan PC; Wilson DJ
    Biomaterials; 1994 Jun; 15(8):601-8. PubMed ID: 7948579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspects of bone healing and bone substitute incorporation. An experimental study in rabbit skull bone defects.
    Isaksson S
    Swed Dent J Suppl; 1992; 84():1-46. PubMed ID: 1334579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative bone growth behavior in granules of bioceramic materials of various sizes.
    Oonishi H; Hench LL; Wilson J; Sugihara F; Tsuji E; Kushitani S; Iwaki H
    J Biomed Mater Res; 1999 Jan; 44(1):31-43. PubMed ID: 10397902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoinductive potential of 4 commonly employed bone grafts.
    Miron RJ; Zhang Q; Sculean A; Buser D; Pippenger BE; Dard M; Shirakata Y; Chandad F; Zhang Y
    Clin Oral Investig; 2016 Nov; 20(8):2259-2265. PubMed ID: 26814714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoinductive potential of human demineralised bone and a bioceramic in abdominal musculature of the rat.
    Nolan P; Templeton P; Mollan RA; Wilson DJ
    J Anat; 1991 Feb; 174():97-102. PubMed ID: 1827785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis.
    Vuola J; Taurio R; Göransson H; Asko-Seljavaara S
    Biomaterials; 1998; 19(1-3):223-7. PubMed ID: 9678871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study.
    Taylor JC; Cuff SE; Leger JP; Morra A; Anderson GI
    Int J Oral Maxillofac Implants; 2002; 17(3):321-30. PubMed ID: 12074446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The histological study of osseous regeneration following implantation of various bone graft biomaterials.
    Alan H; Farahani E; Tunik S; Kavak G
    Niger J Clin Pract; 2016; 19(4):517-22. PubMed ID: 27251971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix.
    Zhang M; Powers RM; Wolfinbarger L
    J Periodontol; 1997 Nov; 68(11):1085-92. PubMed ID: 9407401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of demineralized bone matrix on bone growth within a porous HA material: a histologic and histometric study.
    Damien CJ; Parsons JR; Prewett AB; Huismans F; Shors EC; Holmes RE
    J Biomater Appl; 1995 Jan; 9(3):275-88. PubMed ID: 9309501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allograft bone matrix versus synthetic bone graft substitutes.
    Zimmermann G; Moghaddam A
    Injury; 2011 Sep; 42 Suppl 2():S16-21. PubMed ID: 21889142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined effects of porous hydroxyapatite and demineralized bone matrix on bone induction: in vitro and in vivo study using a nude rat model.
    Lee JH; Lee KM; Baek HR; Jang SJ; Lee JH; Ryu HS
    Biomed Mater; 2011 Feb; 6(1):015008. PubMed ID: 21205997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis.
    Tsuruga E; Takita H; Itoh H; Wakisaka Y; Kuboki Y
    J Biochem; 1997 Feb; 121(2):317-24. PubMed ID: 9089406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.