These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 856323)

  • 21. A method for predicting the effects of light intensity on algal growth and phosphorus assimilation.
    Azad HS; Borchardt JA
    J Water Pollut Control Fed; 1969 Nov; ():Suppl:R392+. PubMed ID: 5350239
    [No Abstract]   [Full Text] [Related]  

  • 22. A practical application of Droop nutrient kinetics (WR 1883).
    Cerco CF; Noel MR; Tillman DH
    Water Res; 2004 Dec; 38(20):4446-54. PubMed ID: 15556219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary development and evaluation of an algae-based air regeneration system.
    Nienow JA
    Life Support Biosph Sci; 2000; 7(2):203-7. PubMed ID: 11543558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer.
    Gordillo FJ; Aguilera J; Jiménez C
    J Exp Bot; 2006; 57(11):2661-71. PubMed ID: 16829547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers-a field-based approach.
    Fitzgerald SA; Steuer JJ
    Sci Total Environ; 2006 Jan; 354(1):60-74. PubMed ID: 16376697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential effects of light on photosynthesis and nitrogen metabolism in Chlorella pyrenoidosa. SAM-TR-69-40.
    Cobb HD; Hall RH; Costello WJ
    Tech Rep SAM-TR; 1969 Aug; ():1-9. PubMed ID: 5308727
    [No Abstract]   [Full Text] [Related]  

  • 27. Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata.
    Katsumata M; Koike T; Nishikawa M; Kazumura K; Tsuchiya H
    Water Res; 2006 Oct; 40(18):3393-400. PubMed ID: 16970970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.
    Kayombo S; Mbwette TS; Katima JH; Jorgensen SE
    Water Res; 2003 Jul; 37(12):2937-43. PubMed ID: 12767296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the increase of nodularin content in Baltic Sea Nodularia spumigena during stationary phase in phosphorus-limited batch cultures.
    Stolte W; Karlsson C; Carlsson P; Granéli E
    FEMS Microbiol Ecol; 2002 Sep; 41(3):211-20. PubMed ID: 19709255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model and experimental study of phosphate uptake kinetics in algae: considering surface adsorption and P-stress.
    Yao B; Xi B; Hu C; Huo S; Su J; Liu H
    J Environ Sci (China); 2011; 23(2):189-98. PubMed ID: 21516991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relationship between the rate of phosphate absorption and protein synthesis during phosphate starvation in Chorella pyrenoidosa.
    Jeanjean R
    FEBS Lett; 1973 May; 32(1):149-51. PubMed ID: 4715675
    [No Abstract]   [Full Text] [Related]  

  • 32. A stoichiometrically derived algal growth model and its global analysis.
    Li X; Wang H
    Math Biosci Eng; 2010 Oct; 7(4):825-36. PubMed ID: 21077710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The DNA, RNA and protein composition of the cyanobacterium Anacystis nidulans grown in light- and carbon dioxide-limited chemostats.
    Parrott LM; Slater JH
    Arch Microbiol; 1980 Aug; 127(1):53-8. PubMed ID: 6158924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of phosphate uptake kinetics in the bloom-forming dinoflagellates prorocentrum donghaiense with emphasis on two-stage dynamic process.
    Jiang J; Shen A; Wang H; Yuan S
    J Theor Biol; 2019 Feb; 463():12-21. PubMed ID: 30529485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of Stichococcus bacillaris Näg. in high concentrations of different forms of nitrogen.
    Rzeczycka M; Przytocka-Jusiak M
    Acta Microbiol Pol; 1979; 28(2):135-44. PubMed ID: 89792
    [No Abstract]   [Full Text] [Related]  

  • 36. Predicting production in light-limited continuous cultures of algae.
    Eppley RW; Dyer DL
    Appl Microbiol; 1965 Nov; 13(6):833-7. PubMed ID: 5866033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PHOSPHATE-LIMITED GROWTH OF PAVLOVA LUTHERI (PRYMNESIOPHYCEAE) IN CONTINUOUS CULTURE: DETERMINATION OF GROWTH-RATE-LIMITING SUBSTRATE CONCENTRATIONS WITH A SENSITIVE BIOASSAY PROCEDURE(1).
    Laws EA; Pei S; Bienfang P; Grant S; Sunda WG
    J Phycol; 2011 Oct; 47(5):1089-97. PubMed ID: 27020191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of phosphate limited algal growth: simulation of phosphate shocks.
    Nyholm N
    J Theor Biol; 1978 Feb; 70(4):415-25. PubMed ID: 633927
    [No Abstract]   [Full Text] [Related]  

  • 39. Steady-State Effects of 2,5,2',5'-Tetrachlorobiphenyl on Growth, Photosynthesis, and P Uptake in Selenastrum capricornutum.
    Rhee GY; Shane L; Denucci A
    Appl Environ Microbiol; 1988 Jun; 54(6):1394-8. PubMed ID: 16347650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Active and inactive phosphate uptake in leaf cells of Elodea densa at high external phosphate concentrations].
    Grünsfelder M; Simonis W
    Planta; 1973 Jun; 115(2):173-86. PubMed ID: 24458866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.