These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Role of granulocyte-macrophage colony-stimulating factor in Philadelphia (Ph1)-positive acute lymphoblastic leukemia: studies on two newly established Ph1-positive acute lymphoblastic leukemia cell lines (Z-119 and Z-181). Estrov Z; Talpaz M; Zipf TF; Kantarjian HM; Ku S; Ouspenskaia MV; Hirsch-Ginsberg C; Huh Y; Yee G; Kurzrock R J Cell Physiol; 1996 Mar; 166(3):618-30. PubMed ID: 8600166 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo effects of a farnesyltransferase inhibitor on Nf1-deficient hematopoietic cells. Mahgoub N; Taylor BR; Gratiot M; Kohl NE; Gibbs JB; Jacks T; Shannon KM Blood; 1999 Oct; 94(7):2469-76. PubMed ID: 10498620 [TBL] [Abstract][Full Text] [Related]
9. Use of granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with hydroxyurea as post-transplant therapy in chronic myelogenous leukemia patients autografted with unmanipulated hematopoietic cells. Carlo-Stella C; Regazzi E; Andrizzi C; Savoldo B; Garau D; Montefusco E; Vignetti M; Mandelli F; Rizzoli V; Meloni G Haematologica; 1997; 82(3):291-6. PubMed ID: 9234574 [TBL] [Abstract][Full Text] [Related]
10. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). Schäbitz WR; Krüger C; Pitzer C; Weber D; Laage R; Gassler N; Aronowski J; Mier W; Kirsch F; Dittgen T; Bach A; Sommer C; Schneider A J Cereb Blood Flow Metab; 2008 Jan; 28(1):29-43. PubMed ID: 17457367 [TBL] [Abstract][Full Text] [Related]
11. In vitro induction of inhibitory macrophage differentiation by granulocyte-macrophage colony-stimulating factor, stem cell factor and interferon-gamma from lineage phenotypes-negative c-kit-positive murine hematopoietic progenitor cells. Ferret-Bernard S; Saï P; Bach JM Immunol Lett; 2004 Feb; 91(2-3):221-7. PubMed ID: 15019293 [TBL] [Abstract][Full Text] [Related]
13. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. Shannon KM; O'Connell P; Martin GA; Paderanga D; Olson K; Dinndorf P; McCormick F N Engl J Med; 1994 Mar; 330(9):597-601. PubMed ID: 8302341 [TBL] [Abstract][Full Text] [Related]
14. Bcr-Abl has a greater intrinsic capacity than v-Abl to induce the neoplastic expansion of myeloid cells. Gross AW; Ren R Oncogene; 2000 Dec; 19(54):6286-96. PubMed ID: 11175343 [TBL] [Abstract][Full Text] [Related]
15. Serum levels of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in treated patients with chronic myelogenous leukemia in chronic phase. Balleari E; Bason C; Visani G; Gobbi M; Ottaviani E; Ghio R Haematologica; 1994; 79(1):7-12. PubMed ID: 15378942 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Kalra R; Paderanga DC; Olson K; Shannon KM Blood; 1994 Nov; 84(10):3435-9. PubMed ID: 7949098 [TBL] [Abstract][Full Text] [Related]
17. P210 Bcr-Abl interacts with the interleukin 3 receptor beta(c) subunit and constitutively induces its tyrosine phosphorylation. Wilson-Rawls J; Xie S; Liu J; Laneuville P; Arlinghaus RB Cancer Res; 1996 Aug; 56(15):3426-30. PubMed ID: 8758906 [TBL] [Abstract][Full Text] [Related]
18. Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1. Calvo KR; Sykes DB; Pasillas MP; Kamps MP Oncogene; 2002 Jun; 21(27):4247-56. PubMed ID: 12082612 [TBL] [Abstract][Full Text] [Related]
19. Autocrine transformation of human hematopoietic cells after transfection with an activated granulocyte/macrophage colony stimulating factor gene. Hoyle PE; Steelman LS; McCubrey JA Cytokines Cell Mol Ther; 1997 Sep; 3(3):159-68. PubMed ID: 9426974 [TBL] [Abstract][Full Text] [Related]