These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8565147)

  • 1. Citrinin affects the oxidative metabolism of BHK-21 cells.
    Chagas GM; Campello AP; Kluppel ML; Oliveira BM
    Cell Biochem Funct; 1995 Dec; 13(4):267-71. PubMed ID: 8565147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of citrinin-induced dysfunction of mitochondria. II. Effect on respiration, enzyme activities, and membrane potential of liver mitochondria.
    Chagas GM; Oliveira BM; Campello AP; Klüppel ML
    Cell Biochem Funct; 1992 Sep; 10(3):209-16. PubMed ID: 1330354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of citrinin-induced dysfunction of mitochondria. IV--Effect on Ca2+ transport.
    Chagas GM; Oliveira MA; Campello AP; Kluppel ML
    Cell Biochem Funct; 1995 Mar; 13(1):53-9. PubMed ID: 7720190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.
    Pereira da Silva AP; El-Bacha T; Kyaw N; dos Santos RS; da-Silva WS; Almeida FC; Da Poian AT; Galina A
    Biochem J; 2009 Feb; 417(3):717-26. PubMed ID: 18945211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro.
    Mazzio EA; Reams RR; Soliman KF
    Brain Res; 2004 Apr; 1004(1-2):29-44. PubMed ID: 15033417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative metabolism in cancer growth.
    Ristow M
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):339-45. PubMed ID: 16778561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The oxidative phosphorylation system of BHK-21 cells in suspension cultivation].
    Kudzina LIu; Popova II; Akatov VS; Lezhnev EI
    Tsitologiia; 1993; 35(1):88-93. PubMed ID: 8475581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria in cancer: not just innocent bystanders.
    Frezza C; Gottlieb E
    Semin Cancer Biol; 2009 Feb; 19(1):4-11. PubMed ID: 19101633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.
    Mazzio EA; Soliman KF
    Biochem Pharmacol; 2004 Mar; 67(6):1167-84. PubMed ID: 15006552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species.
    Ribeiro SM; Chagas GM; Campello AP; Klüppel ML
    Cell Biochem Funct; 1997 Sep; 15(3):203-9. PubMed ID: 9377799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer's sweet tooth.
    Bui T; Thompson CB
    Cancer Cell; 2006 Jun; 9(6):419-20. PubMed ID: 16766260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1.
    Semenza GL
    Biochem J; 2007 Jul; 405(1):1-9. PubMed ID: 17555402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
    Lunt SY; Vander Heiden MG
    Annu Rev Cell Dev Biol; 2011; 27():441-64. PubMed ID: 21985671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line in batch and continuous cultures.
    Linz M; Zeng AP; Wagner R; Deckwer WD
    Biotechnol Prog; 1997; 13(4):453-63. PubMed ID: 9265780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate oxidation and ATP supply in AS-30D hepatoma cells.
    Rodríguez-Enríquez S; Torres-Márquez ME; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Mar; 375(1):21-30. PubMed ID: 10683245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells.
    Weber K; Ridderskamp D; Alfert M; Hoyer S; Wiesner RJ
    Biol Chem; 2002 Feb; 383(2):283-90. PubMed ID: 11934266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts.
    Hutter E; Renner K; Pfister G; Stöckl P; Jansen-Dürr P; Gnaiger E
    Biochem J; 2004 Jun; 380(Pt 3):919-28. PubMed ID: 15018610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy metabolism in tumor cells.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E
    FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria, hexokinase and pyruvate kinase isozymes in the aerobic glycolysis of tumor cells.
    Petrucci D; Cesare P; Colafarina S
    Ital J Biochem; 1997 Sep; 46(3):131-41. PubMed ID: 9442422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.