These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 8565837)
21. Specification process of animal plate in the sea urchin embryo. Sasaki H; Kominami T Dev Growth Differ; 2008 Sep; 50(7):595-606. PubMed ID: 19238730 [TBL] [Abstract][Full Text] [Related]
22. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746 [TBL] [Abstract][Full Text] [Related]
23. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Moody SA; Kline MJ Anat Embryol (Berl); 1990; 182(4):347-62. PubMed ID: 2252221 [TBL] [Abstract][Full Text] [Related]
24. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae. Kominami T; Takata H Dev Growth Differ; 2003 Apr; 45(2):129-42. PubMed ID: 12752501 [TBL] [Abstract][Full Text] [Related]
25. Elongated Microvilli on Vegetal Pole Cells in Sea Urchin Embryos: (microvilli/sea urchin/vegetal pole/primary mesenchyme cell). Amemiya S Dev Growth Differ; 1986 Nov; 28(6):575-582. PubMed ID: 37282125 [TBL] [Abstract][Full Text] [Related]
26. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. Wray GA; Raff RA Dev Biol; 1990 Sep; 141(1):41-54. PubMed ID: 2391005 [TBL] [Abstract][Full Text] [Related]
27. Cell interactions and mesodermal cell fates in the sea urchin embryo. Ettensohn CA Dev Suppl; 1992; ():43-51. PubMed ID: 1299367 [TBL] [Abstract][Full Text] [Related]
28. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Henry JJ; Raff RA Dev Biol; 1990 Sep; 141(1):55-69. PubMed ID: 2391006 [TBL] [Abstract][Full Text] [Related]
29. A fate map for the 32-cell stage of Rana pipiens. Saint-Jeannet JP; Dawid IB Dev Biol; 1994 Dec; 166(2):755-62. PubMed ID: 7813792 [TBL] [Abstract][Full Text] [Related]
30. The origin of skeleton forming cells in the sea urchin embryo. Urben S; Nislow C; Spiegel M Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470 [TBL] [Abstract][Full Text] [Related]
31. Restricted expression of karyopherin alpha mRNA in the sea urchin suggests a role in neurogenesis. Byrum CA; Smith J; Easterling MR; Bridges MC Gene Expr Patterns; 2014 Sep; 16(1):51-60. PubMed ID: 25218279 [TBL] [Abstract][Full Text] [Related]
32. Inhibition of mitogen activated protein kinase signaling affects gastrulation and spiculogenesis in the sea urchin embryo. Kumano M; Foltz KR Dev Growth Differ; 2003; 45(5-6):527-42. PubMed ID: 14706077 [TBL] [Abstract][Full Text] [Related]
33. The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Gibson AW; Burke RD Dev Biol; 1985 Feb; 107(2):414-9. PubMed ID: 3972163 [TBL] [Abstract][Full Text] [Related]
34. Pattern formation during gastrulation in the sea urchin embryo. McClay DR; Armstrong NA; Hardin J Dev Suppl; 1992; ():33-41. PubMed ID: 1299366 [TBL] [Abstract][Full Text] [Related]
35. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo. Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028 [TBL] [Abstract][Full Text] [Related]
36. The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads. Ettensohn CA; McClay DR Dev Biol; 1986 Oct; 117(2):380-91. PubMed ID: 3758478 [TBL] [Abstract][Full Text] [Related]
37. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. Huang S; Moody SA J Neurosci; 1993 Aug; 13(8):3193-210. PubMed ID: 8340804 [TBL] [Abstract][Full Text] [Related]
38. Changes in states of commitment of single animal pole blastomeres of Xenopus laevis. Snape A; Wylie CC; Smith JC; Heasman J Dev Biol; 1987 Feb; 119(2):503-10. PubMed ID: 3803715 [TBL] [Abstract][Full Text] [Related]
39. Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos. Amemiya S Exp Cell Res; 1989 Aug; 183(2):453-62. PubMed ID: 2767159 [TBL] [Abstract][Full Text] [Related]
40. Micromeres are required for normal vegetal plate specification in sea urchin embryos. Ransick A; Davidson EH Development; 1995 Oct; 121(10):3215-22. PubMed ID: 7588056 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]