These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 8565912)

  • 1. Modeling organic chemical fate in aquatic systems: significance of bioaccumulation and relevant time-space scales.
    Thomann RV
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):53-7. PubMed ID: 8565912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation potential of persistent organic chemicals in humans.
    Czub G; McLachlan MS
    Environ Sci Technol; 2004 Apr; 38(8):2406-12. PubMed ID: 15116847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between water solubility, octanol/water partition coefficients, and bioconcentration of organic chemicals in fish: a review.
    van Gestel CA; Otermann K; Canton JH
    Regul Toxicol Pharmacol; 1985 Dec; 5(4):422-31. PubMed ID: 3912852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the bioaccumulation of persistent organic pollutants in aquatic food webs.
    Voutsas E; Magoulas K; Tassios D
    Chemosphere; 2002 Aug; 48(7):645-51. PubMed ID: 12201194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient.
    Bintein S; Devillers J; Karcher W
    SAR QSAR Environ Res; 1993; 1(1):29-39. PubMed ID: 8790626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Aug; 32(8):1873-81. PubMed ID: 23625748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental contaminants in the food chain.
    Clarkson TW
    Am J Clin Nutr; 1995 Mar; 61(3 Suppl):682S-686S. PubMed ID: 7879738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems.
    Nfon E; Armitage JM; Cousins IT
    Sci Total Environ; 2011 Nov; 409(24):5416-22. PubMed ID: 21962596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.
    Walters DM; Mills MA; Cade BS; Burkard LP
    Environ Sci Technol; 2011 May; 45(9):3917-24. PubMed ID: 21466215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter uncertainty in modeling bioaccumulation factors of fish.
    Hauck M; Hendriks HW; Huijbregts MA; Ragas AM; van de Meent D; Hendriks AJ
    Environ Toxicol Chem; 2011 Feb; 30(2):403-12. PubMed ID: 21038440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes.
    Pi N; Ng JZ; Kelly BC
    Sci Total Environ; 2017 Dec; 601-602():812-820. PubMed ID: 28578239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary uptake models used for modeling the bioaccumulation of organic contaminants in fish.
    Barber MC
    Environ Toxicol Chem; 2008 Apr; 27(4):755-77. PubMed ID: 18333698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening tools for the bioconcentration potential of monovalent organic ions in fish.
    Bittermann K; Linden L; Goss KU
    Environ Sci Process Impacts; 2018 May; 20(5):845-853. PubMed ID: 29714798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-linear modeling of bioconcentration using partition coefficients for narcotic chemicals.
    Dimitrov SD; Mekenyan OG; Walker JD
    SAR QSAR Environ Res; 2002 Mar; 13(1):177-84. PubMed ID: 12074386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.
    Lo JC; Letinski DJ; Parkerton TF; Campbell DA; Gobas FA
    Environ Sci Technol; 2016 Dec; 50(24):13299-13308. PubMed ID: 27993034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem.
    Lu PY; Metcalf RL
    Environ Health Perspect; 1975 Apr; 10():269-84. PubMed ID: 1157796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.