These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8566374)

  • 1. Probing protein structure with proteases: studies of an equilibrium intermediate in protein unfolding.
    Webb T; Jackson PJ; Morris GE
    Biochem Soc Trans; 1995 Aug; 23(3):477S. PubMed ID: 8566374
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple-state equilibrium unfolding of guanidino kinases.
    Gross M; Lustig A; Wallimann T; Furter R
    Biochemistry; 1995 Aug; 34(33):10350-7. PubMed ID: 7654688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase.
    Uda K; Suzuki T
    Protein J; 2004 Jan; 23(1):53-64. PubMed ID: 15115182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced fit in arginine kinase.
    Zhou G; Ellington WR; Chapman MS
    Biophys J; 2000 Mar; 78(3):1541-50. PubMed ID: 10692338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitope mapping.
    Morris GE
    Methods Mol Biol; 1998; 80():161-72. PubMed ID: 9664373
    [No Abstract]   [Full Text] [Related]  

  • 7. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of an intermediate in the unfolding of creatine kinase.
    Webb TI; Morris GE
    Proteins; 2001 Feb; 42(2):269-78. PubMed ID: 11119651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of phosphagen kinase V. cDNA-derived amino acid sequences of two molluscan arginine kinases from the chiton Liolophura japonica and the turbanshell Battilus cornutus.
    Suzuki T; Ban T; Furukohri T
    Biochim Biophys Acta; 1997 Jun; 1340(1):1-6. PubMed ID: 9217008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification by protein microsequencing of a proteinase-V8-cleavage site in a folding intermediate of chick muscle creatine kinase.
    Morris GE; Jackson PJ
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):809-11. PubMed ID: 1684894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological and physical comparison of monomeric and dimeric phosphagen kinases: Some evolutionary implications.
    Wright-Weber B; Held BC; Brown A; Grossman SH
    Biochim Biophys Acta; 2006 Mar; 1760(3):364-71. PubMed ID: 16386374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism. Creatine kinase shapes up.
    Kenyon GL
    Nature; 1996 May; 381(6580):281-2. PubMed ID: 8692264
    [No Abstract]   [Full Text] [Related]  

  • 13. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding and refolding of dimeric creatine kinase equilibrium and kinetic studies.
    Fan YX; Zhou JM; Kihara H; Tsou CL
    Protein Sci; 1998 Dec; 7(12):2631-41. PubMed ID: 9865958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes of creatine kinase upon substrate binding.
    Forstner M; Kriechbaum M; Laggner P; Wallimann T
    Biophys J; 1998 Aug; 75(2):1016-23. PubMed ID: 9675202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence homology and structure predictions of the creatine kinase isoenzymes.
    Mühlebach SM; Gross M; Wirz T; Wallimann T; Perriard JC; Wyss M
    Mol Cell Biochem; 1994; 133-134():245-62. PubMed ID: 7808457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protease digestion studies of an equilibrium intermediate in the unfolding of creatine kinase.
    Webb T; Jackson PJ; Morris GE
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):83-8. PubMed ID: 9003404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates.
    Wyss M; James P; Schlegel J; Wallimann T
    Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The three-dimensional structure of cytosolic bovine retinal creatine kinase.
    Tisi D; Bax B; Loew A
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):187-93. PubMed ID: 11173463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.