BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8566548)

  • 1. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo.
    Lorimer GH
    FASEB J; 1996 Jan; 10(1):5-9. PubMed ID: 8566548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP.
    Goloubinoff P; Christeller JT; Gatenby AA; Lorimer GH
    Nature; 1989 Dec 21-28; 342(6252):884-9. PubMed ID: 10532860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric functional interaction between chaperonin and its plastidic cofactors.
    Guo P; Jiang S; Bai C; Zhang W; Zhao Q; Liu C
    FEBS J; 2015 Oct; 282(20):3959-70. PubMed ID: 26237751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding.
    van der Vies SM; Gatenby AA; Georgopoulos C
    Nature; 1994 Apr; 368(6472):654-6. PubMed ID: 7908418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer.
    Azem A; Diamant S; Kessel M; Weiss C; Goloubinoff P
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12021-5. PubMed ID: 8618836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60.
    Baneyx F; Bertsch U; Kalbach CE; van der Vies SM; Soll J; Gatenby AA
    J Biol Chem; 1995 May; 270(18):10695-702. PubMed ID: 7738007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate mutations that bypass a specific Cpn10 chaperonin requirement for protein folding.
    Andreadis JD; Black LW
    J Biol Chem; 1998 Dec; 273(51):34075-86. PubMed ID: 9852065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin.
    Natesh R; Clare DK; Farr GW; Horwich AL; Saibil HR
    Int J Biol Macromol; 2018 Oct; 118(Pt A):671-675. PubMed ID: 29959019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of substrate progression through the bacterial chaperonin cycle.
    Gardner S; Darrow MC; Lukoyanova N; Thalassinos K; Saibil HR
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2308933120. PubMed ID: 38064510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein.
    Nakonechny WS; Teschke CM
    J Biol Chem; 1998 Oct; 273(42):27236-44. PubMed ID: 9765246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside.
    Motojima F; Yoshida M
    EMBO J; 2010 Dec; 29(23):4008-19. PubMed ID: 20959808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion and compression of a protein folding intermediate by GroEL.
    Lin Z; Rye HS
    Mol Cell; 2004 Oct; 16(1):23-34. PubMed ID: 15469819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphofructokinase interacts with molecular chaperonins GroEL and GroES.
    Melegh B; Minami Y
    Acta Biol Hung; 1997; 48(4):399-407. PubMed ID: 9847453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation.
    Apetri AC; Horwich AL
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17351-5. PubMed ID: 18987317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of the asymmetric Escherichia coli chaperonin complex. Guanidine chloride causes rapid dissociation.
    Todd MJ; Lorimer GH
    J Biol Chem; 1995 Mar; 270(10):5388-94. PubMed ID: 7890652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding.
    Paul S; Singh C; Mishra S; Chaudhuri TK
    FASEB J; 2007 Sep; 21(11):2874-85. PubMed ID: 17494995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperonin GroEL-GroES Functions as both Alternating and Non-Alternating Engines.
    Yamamoto D; Ando T
    J Mol Biol; 2016 Jul; 428(15):3090-101. PubMed ID: 27393305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaperonin-co-chaperonin interactions.
    Boshoff A
    Subcell Biochem; 2015; 78():153-78. PubMed ID: 25487021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.