These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8566831)

  • 21. Intravitreal functional plasminogen in eyes with branch retinal vein occlusion.
    Bertelmann T; Sekundo W; Strodthoff S; Witteborn MC; Stief T; Irle S; Nguyen N; Koss MJ; Mennel S
    Ophthalmic Res; 2014; 52(2):74-80. PubMed ID: 25059575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Longitudinal vasculature changes in branch retinal vein occlusion with projection-resolved optical coherence tomography angiography.
    Tsuboi K; Kamei M
    Graefes Arch Clin Exp Ophthalmol; 2019 Sep; 257(9):1831-1840. PubMed ID: 31165932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative evaluation for blood-retinal barrier breakdown in experimental retinal vein occlusion produced by photodynamic thrombosis using a new photosensitizer.
    Ieki Y; Nishiwaki H; Miura S; Hirata Y; Sakata I; Nonaka A; Kiryu J; Honda Y
    Curr Eye Res; 2002 Nov; 25(5):317-23. PubMed ID: 12658551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Branch retinal vein occlusion after spontaneous obliteration of retinal arterial macroaneurysm.
    Battaglia Parodi M; Bondel E; Saviano S; Ravalico G
    Retina; 1998; 18(4):378-9. PubMed ID: 9730186
    [No Abstract]   [Full Text] [Related]  

  • 25. SD-OCT pattern of retinal venous occlusion with cystoid macular edema treated with Ozurdex®.
    Coscas G; Coscas F; Zucchiatti I; Glacet-Bernard A; Soubrane G; Souïed E
    Eur J Ophthalmol; 2011; 21(5):631-6. PubMed ID: 21500185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomic pattern of arteriovenous crossings in branch retinal vein occlusion.
    Hamid S; Mirza SA; Shokh I
    J Pak Med Assoc; 2008 May; 58(5):233-6. PubMed ID: 18655397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fundus photographic, fluorescein angiographic, and indocyanine green angiographic signs in successful laser chorioretinal venous anastomosis for central retinal vein occlusion.
    Browning DJ
    Ophthalmology; 1999 Dec; 106(12):2261-8. PubMed ID: 10599655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of intraocular gases on rabbit blood-retinal barrier permeability.
    Green K; Slagle T; Cheeks L; Norman BC
    Lens Eye Toxic Res; 1992; 9(1):67-76. PubMed ID: 1599908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined central retinal vein occlusion and cilioretinal artery occlusion associated with prolonged retinal arterial filling.
    Keyser BJ; Duker JS; Brown GC; Sergott RC; Bosley TM
    Am J Ophthalmol; 1994 Mar; 117(3):308-13. PubMed ID: 8129002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations of the blood-retinal barrier and retinal thickness in preclinical retinopathy in subjects with type 2 diabetes.
    Lobo CL; Bernardes RC; Cunha-Vaz JG
    Arch Ophthalmol; 2000 Oct; 118(10):1364-9. PubMed ID: 11030818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progressive retinal nonperfusion in ischemic central retinal vein occlusion.
    Wykoff CC; Brown DM; Croft DE; Major JC; Wong TP
    Retina; 2015 Jan; 35(1):43-7. PubMed ID: 25102193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography.
    Spaide RF
    Retina; 2011 May; 31(5):829-37. PubMed ID: 21487338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion.
    McAllister IL; Vijayasekaran S; Chen SD; Yu DY
    Am J Ophthalmol; 2009 May; 147(5):838-46, 846.e1-2. PubMed ID: 19211093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of the permeability of the blood-retinal barrier in normal individuals.
    Oguro Y; Tsukahara Y; Saito I; Kondo T
    Invest Ophthalmol Vis Sci; 1985 Jul; 26(7):969-76. PubMed ID: 4008211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of fluorescein to vitreous in vitro.
    Knudsen LL
    Acta Ophthalmol (Copenh); 1987 Jun; 65(3):352-7. PubMed ID: 3618161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the vitreous in branch retinal vein occlusion.
    Kado M; Trempe CL
    Am J Ophthalmol; 1988 Jan; 105(1):20-4. PubMed ID: 2447780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Blood-Retinal Barrier in the Management of Retinal Disease: EURETINA Award Lecture.
    Cunha-Vaz J
    Ophthalmologica; 2017; 237(1):1-10. PubMed ID: 28152535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A prospective evaluation of the Heidelberg retina flowmeter in diagnosing ischaemia following branch retinal vein occlusion: a masked, controlled comparison with fluorescein angiography.
    Squirrell DM; Watts A; Evans D; Mody C; Talbot JF
    Eye (Lond); 2001 Jun; 15(Pt 3):261-6. PubMed ID: 11450717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Quantitative computerized image analysis of the relationship between neovascularization and nonperfusion area in branch retinal vein occlusion].
    Zhang HR
    Zhonghua Yan Ke Za Zhi; 1992 Nov; 28(6):335-7. PubMed ID: 1306465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surgical decompression of branch retinal vein occlusion via arteriovenous crossing sheathotomy: a prospective review of 15 cases.
    Opremcak EM; Bruce RA
    Retina; 1999; 19(1):1-5. PubMed ID: 10048366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.