These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 8567010)
1. On the contribution of volume currents to the total magnetic field resulting from the heart excitation process: a simulation study. Czapski P; Ramon C; Huntsman LL; Bardy GH; Kim Y IEEE Trans Biomed Eng; 1996 Jan; 43(1):95-104. PubMed ID: 8567010 [TBL] [Abstract][Full Text] [Related]
2. MCG simulations of myocardial infarctions with a realistic heart-torso model. Czapski P; Ramon C; Haueisen J; Huntsman LL; Nowak H; Bardy GH; Leder U; Kim Y IEEE Trans Biomed Eng; 1998 Nov; 45(11):1313-22. PubMed ID: 9805830 [TBL] [Abstract][Full Text] [Related]
3. MCG simulations with a realistic heart-torso model. Ramon C; Czapski P; Haueisen J; Huntsman LL; Nowak H; Bardy GH; Leder U; Kim Y; Nelson JA IEEE Trans Biomed Eng; 1998 Nov; 45(11):1323-31. PubMed ID: 9805831 [TBL] [Abstract][Full Text] [Related]
4. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study. Klepfer RN; Johnson CR; Macleod RS IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984 [TBL] [Abstract][Full Text] [Related]
5. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots. Busch MH; Vollmann W; Grönemeyer DH Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878 [TBL] [Abstract][Full Text] [Related]
6. The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model. Yang F; Patterson RP Physiol Meas; 2007 Jul; 28(7):S153-61. PubMed ID: 17664633 [TBL] [Abstract][Full Text] [Related]
7. Effects of tissue conductivity variations on the cardiac magnetic fields simulated with a realistic heart-torso model. Czapski P; Ramon C; Huntsman LL; Bardy GH; Kim Y Phys Med Biol; 1996 Aug; 41(8):1247-63. PubMed ID: 8858718 [TBL] [Abstract][Full Text] [Related]
8. Sequential finite element model of tissue electropermeabilization. Sel D; Cukjati D; Batiuskaite D; Slivnik T; Mir LM; Miklavcic D IEEE Trans Biomed Eng; 2005 May; 52(5):816-27. PubMed ID: 15887531 [TBL] [Abstract][Full Text] [Related]
9. Volume conductor effects involved in the genesis of the P wave. van Dam PM; van Oosterom A Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501 [TBL] [Abstract][Full Text] [Related]
10. Passive vortex currents in magneto- and electrocardiography: comparison of magnetic and electric signal strengths. Dutz S; Bellemann ME; Leder U; Haueisen J Phys Med Biol; 2006 Jan; 51(1):145-51. PubMed ID: 16357437 [TBL] [Abstract][Full Text] [Related]
11. The effect of measurement conditions on MCG inverse solutions. Tan GA; Brauer F; Stroink G; Purcell CJ IEEE Trans Biomed Eng; 1992 Sep; 39(9):921-7. PubMed ID: 1473820 [TBL] [Abstract][Full Text] [Related]
12. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662 [TBL] [Abstract][Full Text] [Related]
13. Ranking the influence of tissue conductivities on forward-calculated ECGs. Keller DU; Weber FM; Seemann G; Dössel O IEEE Trans Biomed Eng; 2010 Jul; 57(7):1568-76. PubMed ID: 20659824 [TBL] [Abstract][Full Text] [Related]
14. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. Miranda PC; Hallett M; Basser PJ IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275 [TBL] [Abstract][Full Text] [Related]
15. Induced electric currents in models of man and rodents from 60 Hz magnetic fields. Xi W; Stuchly MA; Gandhi OP IEEE Trans Biomed Eng; 1994 Nov; 41(11):1018-23. PubMed ID: 8001990 [TBL] [Abstract][Full Text] [Related]
16. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. Geneser SE; Kirby RM; MacLeod RS IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344 [TBL] [Abstract][Full Text] [Related]
17. Comparison of electric fields induced in humans and rodents by 60-Hz contact currents. Dawson TW; Caputa K; Stuchly MA; Kavet R IEEE Trans Biomed Eng; 2003 Jun; 50(6):744-53. PubMed ID: 12814241 [TBL] [Abstract][Full Text] [Related]
18. A distributed equivalent magnetic current based FDTD method for the calculation of E-fields induced by gradient coils. Liu F; Crozier S J Magn Reson; 2004 Aug; 169(2):323-7. PubMed ID: 15261629 [TBL] [Abstract][Full Text] [Related]
19. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model. Jorgenson DB; Haynor DR; Bardy GH; Kim Y IEEE Trans Biomed Eng; 1995 Feb; 42(2):172-84. PubMed ID: 7868145 [TBL] [Abstract][Full Text] [Related]
20. The effect of geometric and topologic differences in boundary element models on magnetocardiographic localization accuracy. Pesola K; Lötjönen J; Nenonen J; Magnin IE; Lauerma K; Fenici R; Katila T IEEE Trans Biomed Eng; 2000 Sep; 47(9):1237-47. PubMed ID: 11008425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]