These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8567343)

  • 1. A multirod collimator for neutron therapy.
    Maughan RL; Blosser GF; Blosser EB; Yudelev M; Forman JD; Blosser HG; Powers WE
    Int J Radiat Oncol Biol Phys; 1996 Jan; 34(2):411-20. PubMed ID: 8567343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculations of x-ray and neutron transmission through multirod arrays.
    Maughan RL; Kruger DG; Blosser GF; Blosser HG
    Med Phys; 1995 Apr; 22(4):427-33. PubMed ID: 7609723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of a multirod collimator in fast neutron therapy.
    Yudelev M; Maughan RL; Sharma R; Forman JD
    Bull Cancer Radiother; 1996; 83 Suppl():157s-9s. PubMed ID: 8949770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A superconducting cyclotron for neutron radiation therapy.
    Maughan RL; Powers WE; Blosser HG
    Med Phys; 1994 Jun; 21(6):779-85. PubMed ID: 7935214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static multileaf collimator for fast-neutron therapy.
    Chu JC; Bloch P
    Med Phys; 1987; 14(2):289-90. PubMed ID: 3108640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multileaf collimator for fast neutron therapy at Louvain-la-Neuve.
    Denis JM; Meulders JP; Lannoye E; Longrée Y; Ryckewaert G; Richard F; Vynckier S; Wambersie A
    Bull Cancer Radiother; 1996; 83 Suppl():160s-9s. PubMed ID: 8949771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility.
    Maughan RL; Yudelev M; Aref A; Chuba PJ; Forman J; Blosser EJ; Horste T
    Med Phys; 2002 Apr; 29(4):499-508. PubMed ID: 11991121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.
    Hecksel D; Anferov V; Fitzek M; Shahnazi K
    Med Phys; 2010 Jun; 37(6):2910-7. PubMed ID: 20632602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation and activation characteristics of steel and tungsten and the suitability of these materials for use in a fast neutron multileaf collimator.
    Maughan RL; Yudelev M; Forman JD; Williams SB; Gries D; Fletcher TM; Chapman W; Blosser EJ; Horste T
    Med Phys; 2001 Jun; 28(6):1006-9. PubMed ID: 11439469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Clatterbridge high-energy neutron therapy facility: specification and performance.
    Bonnett DE; Blake SW; Shaw JE; Bewley DK
    Br J Radiol; 1988 Jan; 61(721):38-46. PubMed ID: 3126848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electromechanical design and validation.
    Farr JB; Maughan RL; Yudelev M; Blosser E; Brandon J; Horste T; Forman JD
    Med Phys; 2006 Sep; 33(9):3313-20. PubMed ID: 17022226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission measurements in multi-rod arrays: a design study for a multi-rod collimator.
    Maughan RL; Blosser GF; Blosser EB; Blosser HG; Powers WE
    Radiother Oncol; 1989 May; 15(1):125-31. PubMed ID: 2501835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiologic validation of a fast neutron multileaf collimator.
    Farr JB; Maughan RL; Yudelev M; Blosser E; Brandon J; Horste T; Forman JD
    Med Phys; 2007 Sep; 34(9):3475-84. PubMed ID: 17926950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans.
    Kubo HD; Wilder RB; Pappas CT
    Int J Radiat Oncol Biol Phys; 1999 Jul; 44(4):937-45. PubMed ID: 10386653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a continuously variable collimator for 14 MeV neutrons.
    Beach JL; Kelsey CA
    Phys Med Biol; 1975 Jan; 20(1):47-53. PubMed ID: 803688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron beam characteristics from 50 MeV protons on beryllium using a continuously variable multi-leaf collimator.
    Brahme A; Eenmaa J; Lindbäck S; Montelius A; Wootton P
    Radiother Oncol; 1983 Aug; 1(1):65-76. PubMed ID: 6438702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physical-dosimetric characterization of a multi-leaf collimator system for clinical implementation in conformational radiotherapy].
    Pasquino M; Casanova Borca V; Tofani S
    Radiol Med; 2001 Mar; 101(3):187-92. PubMed ID: 11402959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiological properties of a prototype multi-rod collimator for producing irregular fields in photon radiation therapy.
    Maughan RL; Powers WE; Blosser GF; Blosser EJ; Blosser HG
    Med Phys; 1995 Jan; 22(1):31-6. PubMed ID: 7715568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of multileaf collimator design for a photon beam.
    Galvin JM; Smith AR; Moeller RD; Goodman RL; Powlis WD; Rubenstein J; Solin LJ; Michael B; Needham M; Huntzinger CJ
    Int J Radiat Oncol Biol Phys; 1992; 23(4):789-801. PubMed ID: 1618672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.