These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 8567585)
1. Changes in muscle proton transverse relaxation times and acidosis during exercise and recovery. Cheng HA; Robergs RA; Letellier JP; Caprihan A; Icenogle MV; Haseler LJ J Appl Physiol (1985); 1995 Oct; 79(4):1370-8. PubMed ID: 8567585 [TBL] [Abstract][Full Text] [Related]
2. Effect of muscle glycogen content on exercise-induced changes in muscle T2 times. Price TB; Gore JC J Appl Physiol (1985); 1998 Apr; 84(4):1178-84. PubMed ID: 9516182 [TBL] [Abstract][Full Text] [Related]
3. Relationship between muscle T2* relaxation properties and metabolic state: a combined localized 31P-spectroscopy and 1H-imaging study. Vandenborne K; Walter G; Ploutz-Snyder L; Dudley G; Elliott MA; De Meirleir K Eur J Appl Physiol; 2000 May; 82(1-2):76-82. PubMed ID: 10879446 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Morvan D; Leroy-Willig A Magn Reson Imaging; 1995; 13(7):943-8. PubMed ID: 8583872 [TBL] [Abstract][Full Text] [Related]
5. Evaluations of cooling exercised muscle with MR imaging and 31P MR spectroscopy. Yanagisawa O; Niitsu M; Takahashi H; Goto K; Itai Y Med Sci Sports Exerc; 2003 Sep; 35(9):1517-23. PubMed ID: 12972871 [TBL] [Abstract][Full Text] [Related]
6. Muscle metabolism and acid-base status during exercise in forearm work-related myalgia measured with 31P-MRS. Raymer GH; Green HJ; Ranney DA; Marsh GD; Thompson RT J Appl Physiol (1985); 2009 Apr; 106(4):1198-206. PubMed ID: 19112160 [TBL] [Abstract][Full Text] [Related]
7. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A Hureau TJ; Broxterman RM; Weavil JC; Lewis MT; Layec G; Amann M J Physiol; 2022 Jul; 600(13):3069-3081. PubMed ID: 35593645 [TBL] [Abstract][Full Text] [Related]
8. Effects of active recovery under a decreasing work load following intense muscular exercise on intramuscular energy metabolism. Sairyo K; Iwanaga K; Yoshida N; Mishiro T; Terai T; Sasa T; Ikata T Int J Sports Med; 2003 Apr; 24(3):179-82. PubMed ID: 12740735 [TBL] [Abstract][Full Text] [Related]
11. Pixel T2 distribution in functional magnetic resonance images of muscle. Prior BM; Foley JM; Jayaraman RC; Meyer RA J Appl Physiol (1985); 1999 Dec; 87(6):2107-14. PubMed ID: 10601156 [TBL] [Abstract][Full Text] [Related]
12. High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis. Greiner A; Esterhammer R; Bammer D; Messner H; Kremser C; Jaschke WR; Fraedrich G; Schocke MF Eur J Appl Physiol; 2007 Mar; 99(5):519-31. PubMed ID: 17206438 [TBL] [Abstract][Full Text] [Related]
13. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. Layec G; Malucelli E; Le Fur Y; Manners D; Yashiro K; Testa C; Cozzone PJ; Iotti S; Bendahan D NMR Biomed; 2013 Nov; 26(11):1403-11. PubMed ID: 23703831 [TBL] [Abstract][Full Text] [Related]
14. Imaging of phosphoenergetic state and intracellular pH in human calf muscles after exercise by 31P NMR spectroscopy. Morikawa S; Inubushi T; Kito K; Tabata R Magn Reson Imaging; 1994; 12(7):1121-6. PubMed ID: 7997099 [TBL] [Abstract][Full Text] [Related]
15. Exercise-induced muscle modifications: study of healthy subjects and patients with metabolic myopathies with MR imaging and P-31 spectroscopy. de Kerviler E; Leroy-Willig A; Jehenson P; Duboc D; Eymard B; Syrota A Radiology; 1991 Oct; 181(1):259-64. PubMed ID: 1887044 [TBL] [Abstract][Full Text] [Related]
16. Phosphate metabolism of prior eccentrically loaded vastus medialis muscle during exercise in humans. Rodenburg JB; De Groot MC; van Echteld CJ; Jongsma HJ; Bär PR Acta Physiol Scand; 1995 Feb; 153(2):97-108. PubMed ID: 7778465 [TBL] [Abstract][Full Text] [Related]
17. Skeletal muscle pH assessed by biochemical and 31P-MRS methods during exercise and recovery in men. Sullivan MJ; Saltin B; Negro-Vilar R; Duscha BD; Charles HC J Appl Physiol (1985); 1994 Nov; 77(5):2194-200. PubMed ID: 7868433 [TBL] [Abstract][Full Text] [Related]
18. Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. Roussel M; Mattei JP; Le Fur Y; Ghattas B; Cozzone PJ; Bendahan D J Appl Physiol (1985); 2003 Mar; 94(3):1145-52. PubMed ID: 12433845 [TBL] [Abstract][Full Text] [Related]
19. The use of magnetic resonance imaging to evaluate the effects of cooling on skeletal muscle after strenuous exercise. Yanagisawa O; Niitsu M; Yoshioka H; Goto K; Kudo H; Itai Y Eur J Appl Physiol; 2003 Mar; 89(1):53-62. PubMed ID: 12627305 [TBL] [Abstract][Full Text] [Related]
20. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise. Cannon DT; Howe FA; Whipp BJ; Ward SA; McIntyre DJ; Ladroue C; Griffiths JR; Kemp GJ; Rossiter HB J Appl Physiol (1985); 2013 Sep; 115(6):839-49. PubMed ID: 23813534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]