These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 8567640)
1. Membrane topology of the human Na+/glucose cotransporter SGLT1. Turk E; Kerner CJ; Lostao MP; Wright EM J Biol Chem; 1996 Jan; 271(4):1925-34. PubMed ID: 8567640 [TBL] [Abstract][Full Text] [Related]
2. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study. Gagnon DG; Holt A; Bourgeois F; Wallendorff B; Coady MJ; Lapointe JY Biochim Biophys Acta; 2005 Jun; 1712(2):173-84. PubMed ID: 15904891 [TBL] [Abstract][Full Text] [Related]
3. Membrane topology motifs in the SGLT cotransporter family. Turk E; Wright EM J Membr Biol; 1997 Sep; 159(1):1-20. PubMed ID: 9309206 [TBL] [Abstract][Full Text] [Related]
4. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter. Veyhl M; Spangenberg J; Püschel B; Poppe R; Dekel C; Fritzsch G; Haase W; Koepsell H J Biol Chem; 1993 Nov; 268(33):25041-53. PubMed ID: 8227068 [TBL] [Abstract][Full Text] [Related]
5. Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucose cotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter. Lo B; Silverman M J Biol Chem; 1998 Nov; 273(45):29341-51. PubMed ID: 9792634 [TBL] [Abstract][Full Text] [Related]
6. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. Panayotova-Heiermann M; Eskandari S; Turk E; Zampighi GA; Wright EM J Biol Chem; 1997 Aug; 272(33):20324-7. PubMed ID: 9252334 [TBL] [Abstract][Full Text] [Related]
7. Probing transmembrane topology of the high-affinity Sodium/Glucose cotransporter (SGLT1) with histidine-tagged mutants. Lin J; Kormanec J; Homerová D; Kinne RK J Membr Biol; 1999 Aug; 170(3):243-52. PubMed ID: 10441667 [TBL] [Abstract][Full Text] [Related]
8. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Martín MG; Turk E; Lostao MP; Kerner C; Wright EM Nat Genet; 1996 Feb; 12(2):216-20. PubMed ID: 8563765 [TBL] [Abstract][Full Text] [Related]
9. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. Lee WS; Kanai Y; Wells RG; Hediger MA J Biol Chem; 1994 Apr; 269(16):12032-9. PubMed ID: 8163506 [TBL] [Abstract][Full Text] [Related]
10. Arginine-427 in the Na+/glucose cotransporter (SGLT1) is involved in trafficking to the plasma membrane. Lostao MP; Hirayama BA; Panayotova-Heiermann M; Sampogna SL; Bok D; Wright EM FEBS Lett; 1995 Dec; 377(2):181-4. PubMed ID: 8543046 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of the Na+/glucose cotransporter. Wright EM; Loo DD; Panayotova-Heiermann M; Hirayama BA; Turk E; Eskandari S; Lam JT Acta Physiol Scand Suppl; 1998 Aug; 643():257-64. PubMed ID: 9789568 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. Hirsch JR; Loo DD; Wright EM J Biol Chem; 1996 Jun; 271(25):14740-6. PubMed ID: 8663046 [TBL] [Abstract][Full Text] [Related]
13. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM; Kinne RK Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736 [TBL] [Abstract][Full Text] [Related]
14. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1. Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524 [TBL] [Abstract][Full Text] [Related]
15. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454. Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411 [TBL] [Abstract][Full Text] [Related]
16. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Hallén S; Mareninova O; Brändén M; Sachs G Biochemistry; 2002 Jun; 41(23):7253-66. PubMed ID: 12044156 [TBL] [Abstract][Full Text] [Related]
17. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis. Seatter MJ; Kane S; Porter LM; Arbuckle MI; Melvin DR; Gould GW Biochemistry; 1997 May; 36(21):6401-7. PubMed ID: 9174356 [TBL] [Abstract][Full Text] [Related]
18. Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter. Díez-Sampedro A; Wright EM; Hirayama BA J Biol Chem; 2001 Dec; 276(52):49188-94. PubMed ID: 11602601 [TBL] [Abstract][Full Text] [Related]
19. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Raja MM; Kipp H; Kinne RK Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554 [TBL] [Abstract][Full Text] [Related]
20. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1). Hirayama BA; Loo DD; Wright EM J Biol Chem; 1994 Aug; 269(34):21407-10. PubMed ID: 8063771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]