These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 856789)

  • 1. Occurrence and nature of chromatic adaptation in cyanobacteria.
    Tandeau de Marsac N
    J Bacteriol; 1977 Apr; 130(1):82-91. PubMed ID: 856789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The photoregulated expression of multiple phycocyanin species. A general mechanism for the control of phycocyanin synthesis in chromatically adapting cyanobacteria.
    Bryant DA
    Eur J Biochem; 1981 Oct; 119(2):425-9. PubMed ID: 6796414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic adaptation in a mutant of Fremyella diplosiphon incapable of phycoerythrin synthesis.
    Beguin S; Guglielmi G; Rippka R; Cohen-Bazire G
    Biochimie; 1985 Jan; 67(1):109-17. PubMed ID: 3922434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chromatic illumination on cyanobacterial phycobilisomes. Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light.
    Bryant DA; Cohen-Bazire G
    Eur J Biochem; 1981 Oct; 119(2):415-24. PubMed ID: 6796413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength modulation of phycoerythrin synthesis in Synechocystis sp. 6701.
    de Marsac NT; Castets AM; Cohen-Bazire G
    J Bacteriol; 1980 Apr; 142(1):310-4. PubMed ID: 6768711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium.
    Liotenberg S; Campbell D; Rippka R; Houmard J; de Marsac NT
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():611-622. PubMed ID: 8868436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of light quality and intensity on phycobiliprotein productivity in two Leptolyngbya strains isolated from southern Bahia's Atlantic Forest.
    Gallina ES; Caires TA; Cortés OEJ
    An Acad Bras Cienc; 2024; 96(3):e20230348. PubMed ID: 39166650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts.
    Lichtlé C; Garnier F; Bernard C; Zabulon G; Spilar A; Thomas JC; Etienne AL
    Plant Physiol; 1996 Nov; 112(3):1045-54. PubMed ID: 8938410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon.
    Cobley JG; Miranda RD
    J Bacteriol; 1983 Mar; 153(3):1486-92. PubMed ID: 6402499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Photocontrol of the synthesis of chlorophyll a and phycocyanin in the cyanobacterium Calothrix crustacea Schousboe].
    Luzardo AD; Niell FX; López-Figueroa F
    Rev Esp Fisiol; 1991 Sep; 47(3):109-14. PubMed ID: 1798852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular bases of an alternative dual-enzyme system for light color acclimation of marine
    Grébert T; Nguyen AA; Pokhrel S; Joseph KL; Ratin M; Dufour L; Chen B; Haney AM; Karty JA; Trinidad JC; Garczarek L; Schluchter WM; Kehoe DM; Partensky F
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33627406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin.
    Brown SB; Houghton JD; Vernon DI
    J Photochem Photobiol B; 1990 Apr; 5(1):3-23. PubMed ID: 2111391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India.
    Mishra SK; Shrivastav A; Maurya RR; Patidar SK; Haldar S; Mishra S
    Protein Expr Purif; 2012 Jan; 81(1):5-10. PubMed ID: 21906679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation.
    Casey ES; Kehoe DM; Grossman AR
    J Bacteriol; 1997 Jul; 179(14):4599-606. PubMed ID: 9226271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium.
    Houghton JD; Turner L; Brown SB
    Biochem J; 1988 Sep; 254(3):907-10. PubMed ID: 3196303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference of an apcA insertion with complementary chromatic adaptation in the diazotrophic Synechocystis sp. strain BO 8402.
    Neuschaefer-Rube O; Böger P; Ernst A
    Biochim Biophys Acta; 2002 Feb; 1553(3):279-95. PubMed ID: 11997137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phosphorylated DNA-binding protein is specific for the red-light signal during complementary chromatic adaptation in cyanobacteria.
    Sobczyk A; Bely A; Tandeau de Marsac N; Houmard J
    Mol Microbiol; 1994 Sep; 13(5):875-85. PubMed ID: 7815945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and Chromatic Adaptation of Nostoc sp. Strain MAC and the Pigment Mutant R-MAC.
    Kipe-Nolt JA; Stevens SE; Bryant DA
    Plant Physiol; 1982 Nov; 70(5):1549-53. PubMed ID: 16662715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreversibility of the Effect of Red and Green Light Pulses on the Accumulation in Darkness of mRNAs Coding for Phycocyanin and Phycoerythrin in Fremyella diplosiphon.
    Oelmüller R; Grossman AR; Briggs WR
    Plant Physiol; 1988 Dec; 88(4):1084-91. PubMed ID: 16666426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Nostoc sp. phycobilisome structure by light and temperature.
    Anderson LK; Rayner MC; Sweet RM; Eiserling FA
    J Bacteriol; 1983 Sep; 155(3):1407-16. PubMed ID: 6411691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.