These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 856822)

  • 1. The strength of LTI carbon dental implants.
    Shim HS
    J Biomed Mater Res; 1977 May; 11(3):435-45. PubMed ID: 856822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical behavior of LTI carbon dental implants.
    Shim HS
    Biomater Med Devices Artif Organs; 1976; 4(2):181-92. PubMed ID: 938710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The retention mechanics of LTI carbon, carbon-coated aluminum oxide, and uncoated aluminum oxide dental implants.
    Cook SD; Weinstein AM; Klawitter JJ
    J Biomed Mater Res; 1983 Sep; 17(5):873-83. PubMed ID: 6352708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative histologic evaluation of LTI carbon, carbon-coated aluminum oxide and uncoated aluminum oxide dental implants.
    Cook SD; Weinstein AM; Klawitter JJ; Kent JN
    J Biomed Mater Res; 1983 May; 17(3):519-38. PubMed ID: 6863353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of implant elastic modulus on the stress distribution around LTI carbon and aluminum oxide dental implants.
    Cook SD; Klawitter JJ; Weinstein AM
    J Biomed Mater Res; 1981 Nov; 15(6):879-87. PubMed ID: 7309769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of indentation tests on pyrolytic carbon.
    Gilpin CB; Haubold AD; Ely JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S72-8. PubMed ID: 8794040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of implant geometry on the stress distribution around dental implants.
    Cook SD; Klawitter JJ; Weinstein AM
    J Biomed Mater Res; 1982 Jul; 16(4):369-79. PubMed ID: 7107655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters affecting the stress distribution around LTI carbon and aluminum oxide dental implants.
    Cook SD; Weinstein AM; Klawitter JJ
    J Biomed Mater Res; 1982 Nov; 16(6):875-85. PubMed ID: 7174713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface texture and strength of vitreous carbon-poly(methyl methacrylate) dental implant materials.
    Hodosh M; Gettleman L; Shklar G
    J Biomed Mater Res; 1978 Mar; 12(2):167-79. PubMed ID: 649627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].
    Kato H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Dec; 27(4):1017-27. PubMed ID: 2489466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The staggered installation of dental implants and its effect on bone stresses.
    Abu-Hammad O; Khraisat A; Dar-Odeh N; Jagger DC; Hammerle CH
    Clin Implant Dent Relat Res; 2007 Sep; 9(3):121-7. PubMed ID: 17716255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a high fracture toughness composite ceramic for dental applications.
    Aboushelib MN; Kleverlaan CJ; Feilzer AJ
    J Prosthodont; 2008 Oct; 17(7):538-44. PubMed ID: 18761572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of surface treatments on the interface mechanics of LTI pyrolytic carbon implants.
    Thomas KA; Cook SD; Renz EA; Anderson RC; Haddad RJ; Haubold AD; Yapp R
    J Biomed Mater Res; 1985 Feb; 19(2):145-59. PubMed ID: 4077877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of stress distribution around vertical and angled implants with finite-element analysis.
    Canay S; Hersek N; Akpinar I; Aşik Z
    Quintessence Int; 1996 Sep; 27(9):591-8. PubMed ID: 9180415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysis.
    Cehreli MC; Akça K; Iplikçioğlu H
    Clin Oral Implants Res; 2004 Aug; 15(4):481-9. PubMed ID: 15248884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and histological fixation of hydroxylapatite-coated pyrolytic carbon and titanium alloy implants: a report of short-term results.
    Hetherington VJ; Lord CE; Brown SA
    J Appl Biomater; 1995; 6(4):243-8. PubMed ID: 8589509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.
    Uysal H; Kurtoglu C; Gurbuz R; Tutuncu N
    J Prosthet Dent; 2005 Mar; 93(3):235-44. PubMed ID: 15775924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface treatment of titanium posts on the tensile bond strength.
    Schmage P; Sohn J; Ozcan M; Nergiz I
    Dent Mater; 2006 Feb; 22(2):189-94. PubMed ID: 16039707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibre reinforced composite dental bridge. Part II: Numerical investigation.
    Li W; Swain MV; Li Q; Ironside J; Steven GP
    Biomaterials; 2004 Sep; 25(20):4995-5001. PubMed ID: 15109861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of skeletal attachment to LTI pyrolytic carbon, porous titanium, and carbon-coated porous titanium implants.
    Anderson RC; Cook SD; Weinstein AM; Haddad RJ
    Clin Orthop Relat Res; 1984; (182):242-57. PubMed ID: 6692619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.