These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 8568662)

  • 21. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.
    Westerblad H; Allen DG
    J Gen Physiol; 1991 Sep; 98(3):615-35. PubMed ID: 1761971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse.
    Andrade FH; Reid MB; Allen DG; Westerblad H
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):565-75. PubMed ID: 9575304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contractile activation and measurements of intracellular Ca2+ concentration in cane toad twitch fibres in the presence of 2,3-butanedione monoxime.
    Lyster DJ; Stephenson DG
    Exp Physiol; 1995 Jul; 80(4):543-60. PubMed ID: 7576595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle.
    Allen DG; Westerblad H
    J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):331-42. PubMed ID: 8558467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of terbutaline on force and intracellular calcium in slow-twitch skeletal muscle fibres of the rat.
    Ha TN; Posterino GS; Fryer MW
    Br J Pharmacol; 1999 Apr; 126(8):1717-24. PubMed ID: 10372813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of sarcoplasmic reticulum Ca2+ content in intact amphibian skeletal muscle fibres with 4-chloro-m-cresol.
    Kabbara AA; Allen DG
    Cell Calcium; 1999 Mar; 25(3):227-35. PubMed ID: 10378084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres.
    Dahlstedt AJ; Katz A; Tavi P; Westerblad H
    J Physiol; 2003 Mar; 547(Pt 2):395-403. PubMed ID: 12562893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle.
    Fryer MW; Stephenson DG
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):357-70. PubMed ID: 8782101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle.
    Westerblad H; Allen DG
    J Physiol; 1993 Jul; 466():611-28. PubMed ID: 8410709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis.
    Lee JA; Westerblad H; Allen DG
    J Physiol; 1991 Feb; 433():307-26. PubMed ID: 1841942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance.
    Griffiths RI
    J Physiol; 1991 May; 436():219-36. PubMed ID: 2061831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms underlying changes of tetanic [Ca2+]i and force in skeletal muscle.
    Westerblad H; Allen DG
    Acta Physiol Scand; 1996 Mar; 156(3):407-16. PubMed ID: 8729701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of repeated active stretches on tension generation and myoplasmic calcium in frog single muscle fibres.
    Morgan DL; Claflin DR; Julian FJ
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):665-74. PubMed ID: 9003552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impaired sarcoplasmic reticulum Ca
    Olsson K; Cheng AJ; Al-Ameri M; Wyckelsma VL; Rullman E; Westerblad H; Lanner JT; Gustafsson T; Bruton JD
    J Physiol; 2020 Feb; 598(4):773-787. PubMed ID: 31785106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.
    Rassier DE; Herzog W; Wakeling J; Syme DA
    J Biomech; 2003 Sep; 36(9):1309-16. PubMed ID: 12893039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of caged adenine nucleotides and caged phosphate in intact skeletal muscle fibres of the mouse.
    Allen DG; Lännergren J; Westerblad H
    Acta Physiol Scand; 1999 Aug; 166(4):341-7. PubMed ID: 10610612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue-induced alterations in Ca2+ and caffeine sensitivities of skinned muscle fibers.
    Williams JH; Ward CW; Klug GA
    J Appl Physiol (1985); 1993 Aug; 75(2):586-93. PubMed ID: 8226456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.