BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8568867)

  • 1. AV77 hinge mutation stabilizes the helix-turn-helix domain of trp repressor.
    Gryk MR; Jardetzky O
    J Mol Biol; 1996 Jan; 255(1):204-14. PubMed ID: 8568867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The basis for the super-repressor phenotypes of the AV77 and EK18 mutants of trp repressor.
    Grillo AO; Royer CA
    J Mol Biol; 2000 Jan; 295(1):17-28. PubMed ID: 10623505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural role of a buried salt bridge in the 434 repressor DNA-binding domain.
    Pervushin K; Billeter M; Siegal G; Wüthrich K
    J Mol Biol; 1996 Dec; 264(5):1002-12. PubMed ID: 9000626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Backbone amide dynamics studies of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the (15)N NMR relaxation profiles of wild-type and A77V mutant Apo-TrpR repressors.
    Goel A; Tripet BP; Tyler RC; Nebert LD; Copié V
    Biochemistry; 2010 Sep; 49(37):8006-19. PubMed ID: 20718459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution structures of the trp repressor-operator DNA complex.
    Zhang H; Zhao D; Revington M; Lee W; Jia X; Arrowsmith C; Jardetzky O
    J Mol Biol; 1994 May; 238(4):592-614. PubMed ID: 8176748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range effects on dynamics in a temperature-sensitive mutant of trp repressor.
    Jin L; Fukayama JW; Pelczer I; Carey J
    J Mol Biol; 1999 Jan; 285(1):361-78. PubMed ID: 9878412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refined solution structures of the Escherichia coli trp holo- and aporepressor.
    Zhao D; Arrowsmith CH; Jia X; Jardetzky O
    J Mol Biol; 1993 Feb; 229(3):735-46. PubMed ID: 8433368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the physical basis for trp repressor-operator recognition.
    Grillo AO; Brown MP; Royer CA
    J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of trp apo- and holorepressors: domain structure and ligand-protein interaction.
    Komeiji Y; Uebayasi M; Yamato I
    Proteins; 1994 Nov; 20(3):248-58. PubMed ID: 7892173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR.
    Finucane MD; Jardetzky O
    J Mol Biol; 1995 Nov; 253(4):576-89. PubMed ID: 7473735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator.
    Slijper M; Bonvin AM; Boelens R; Kaptein R
    J Mol Biol; 1996 Jun; 259(4):761-73. PubMed ID: 8683581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR.
    Penin F; Geourjon C; Montserret R; Böckmann A; Lesage A; Yang YS; Bonod-Bidaud C; Cortay JC; Nègre D; Cozzone AJ; Deléage G
    J Mol Biol; 1997 Jul; 270(3):496-510. PubMed ID: 9237914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of the glucocorticoid receptor DNA-binding domain: comparison of wild type and a mutant with altered specificity.
    Berglund H; Wolf-Watz M; Lundbäck T; van den Berg S; Härd T
    Biochemistry; 1997 Sep; 36(37):11188-97. PubMed ID: 9287161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexibility of DNA binding domain of trp repressor required for recognition of different operator sequences.
    Gryk MR; Jardetzky O; Klig LS; Yanofsky C
    Protein Sci; 1996 Jun; 5(6):1195-7. PubMed ID: 8762153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal dynamics of the tryptophan repressor (TrpR) and two functionally distinct TrpR variants, L75F-TrpR and A77V-TrpR, in their l-Trp-bound forms.
    Tripet BP; Goel A; Copie V
    Biochemistry; 2011 Jun; 50(23):5140-53. PubMed ID: 21553830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant.
    Xu Y; Beckett D
    Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor.
    Navarro-Avilés G; Jiménez MA; Pérez-Marín MC; González C; Rico M; Murillo FJ; Elías-Arnanz M; Padmanabhan S
    Mol Microbiol; 2007 Feb; 63(4):980-94. PubMed ID: 17233828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.