BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8568887)

  • 1. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions.
    Benham CJ
    J Mol Biol; 1996 Jan; 255(3):425-34. PubMed ID: 8568887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple collagen I gene regulatory elements have sites of stress-induced DNA duplex destabilization and nuclear scaffold/matrix association potential.
    Mielke C; Christensen MO; Westergaard O; Bode J; Benham CJ; Breindl M
    J Cell Biochem; 2002; 84(3):484-96. PubMed ID: 11813254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions.
    Benham C; Kohwi-Shigematsu T; Bode J
    J Mol Biol; 1997 Nov; 274(2):181-96. PubMed ID: 9398526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIDDBASE: a database containing the stress-induced DNA duplex destabilization (SIDD) profiles of complete microbial genomes.
    Wang H; Kaloper M; Benham CJ
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D373-8. PubMed ID: 16381890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-induced DNA duplex destabilization in transcriptional initiation.
    Benham CJ
    Pac Symp Biocomput; 2001; ():103-14. PubMed ID: 11262932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy.
    Bode J; Winkelmann S; Götze S; Spiker S; Tsutsui K; Bi C; A K P; Benham C
    J Mol Biol; 2006 Apr; 358(2):597-613. PubMed ID: 16516920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining putative regulatory elements in promoter regions of Saccharomyces cerevisiae.
    Horng JT; Huang HD; Huang SL; Yan UC; Chang YC
    In Silico Biol; 2002; 2(3):263-73. PubMed ID: 12542412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The positive aspects of stress: strain initiates domain decondensation (SIDD).
    Winkelmann S; Klar M; Benham C; Prashanth A; Goetze S; Gluch A; Bode J
    Brief Funct Genomic Proteomic; 2006 Mar; 5(1):24-31. PubMed ID: 16769674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The analysis of stress-induced duplex destabilization in long genomic DNA sequences.
    Benham CJ; Bi C
    J Comput Biol; 2004; 11(4):519-43. PubMed ID: 15579230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA.
    Bi C; Benham CJ
    Bioinformatics; 2004 Jun; 20(9):1477-9. PubMed ID: 15130924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters.
    Wang H; Noordewier M; Benham CJ
    Genome Res; 2004 Aug; 14(8):1575-84. PubMed ID: 15289476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhelical destabilization in regulatory regions of stress response genes.
    Wang H; Benham CJ
    PLoS Comput Biol; 2008 Jan; 4(1):e17. PubMed ID: 18208321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of combinatorial regulation and transcription factor binding sites.
    Ryu T; Kim Y; Kim DW; Lee D
    Biotechnol Bioeng; 2007 Aug; 97(6):1594-602. PubMed ID: 17252601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci.
    Benham CJ
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2999-3003. PubMed ID: 8385354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism.
    Opel ML; Aeling KA; Holmes WM; Johnson RC; Benham CJ; Hatfield GW
    Mol Microbiol; 2004 Jul; 53(2):665-74. PubMed ID: 15228542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in strength of autonomously replicating sequences among repeats in the rDNA region of Saccharomyces cerevisiae.
    Reppe S; Jemtland R; Oyen TB
    Biochem Biophys Res Commun; 1999 Dec; 266(1):190-5. PubMed ID: 10581188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying regulatory networks by combinatorial analysis of promoter elements.
    Pilpel Y; Sudarsanam P; Church GM
    Nat Genet; 2001 Oct; 29(2):153-9. PubMed ID: 11547334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewiring of the yeast transcriptional network through the evolution of motif usage.
    Ihmels J; Bergmann S; Gerami-Nejad M; Yanai I; McClellan M; Berman J; Barkai N
    Science; 2005 Aug; 309(5736):938-40. PubMed ID: 16081737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational discovery of transcriptional regulatory rules.
    Pham TH; Clemente JC; Satou K; Ho TB
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii101-7. PubMed ID: 16204087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin.
    Aranda A; Pérez-Ortín JE; Benham CJ; Del Olmo ML
    Yeast; 1997 Mar; 13(4):313-26. PubMed ID: 9133735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.