BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8569078)

  • 1. Effects of phosphorylation on ion channel function.
    Ismailov II; Benos DJ
    Kidney Int; 1995 Oct; 48(4):1167-79. PubMed ID: 8569078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase A phosphorylation and G protein regulation of purified renal Na+ channels in planar bilayer membranes.
    Ismailov II; McDuffie JH; Benos DJ
    J Biol Chem; 1994 Apr; 269(14):10235-41. PubMed ID: 8144604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical status of renal epithelial Na+ channels determines apparent channel conductance, ion selectivity, and amiloride sensitivity.
    Ismailov II; Berdiev BK; Benos DJ
    Biophys J; 1995 Nov; 69(5):1789-800. PubMed ID: 8580322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase A phosphorylation and G protein regulation of type II pneumocyte Na+ channels in lipid bilayers.
    Berdiev BK; Shlyonsky VG; Senyk O; Keeton D; Guo Y; Matalon S; Cantiello HF; Prat AG; Ausiello DA; Ismailov II; Benos DJ
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1262-70. PubMed ID: 9142851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of convergent regulation of brain Na(+) channels by protein kinase C and protein kinase A anchored to AKAP-15.
    Cantrell AR; Tibbs VC; Yu FH; Murphy BJ; Sharp EM; Qu Y; Catterall WA; Scheuer T
    Mol Cell Neurosci; 2002 Sep; 21(1):63-80. PubMed ID: 12359152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of amiloride-sensitive Na+ channels.
    Benos DJ; Awayda MS; Ismailov II; Johnson JP
    J Membr Biol; 1995 Jan; 143(1):1-18. PubMed ID: 7714884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation by phosphorylation of purified epithelial Na+ channels in planar lipid bilayers.
    Oh Y; Smith PR; Bradford AL; Keeton D; Benos DJ
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C85-91. PubMed ID: 8393286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxyl methylation activates purified renal amiloride-sensitive Na+ channels in planar lipid bilayers.
    Ismailov II; McDuffie JH; Sariban-Sohraby S; Johnson JP; Benos DJ
    J Biol Chem; 1994 Sep; 269(35):22193-7. PubMed ID: 8071343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of epithelial Na+ channel activity by long-chain n-3 fatty acids.
    Mies F; Shlyonsky V; Goolaerts A; Sariban-Sohraby S
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F850-5. PubMed ID: 15198929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and regulation of amiloride-sensitive Na+ channels.
    Benos DJ; Awayda MS; Berdiev BK; Bradford AL; Fuller CM; Senyk O; Ismailov II
    Kidney Int; 1996 Jun; 49(6):1632-7. PubMed ID: 8743467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of voltage-gated ion channels.
    Catterall WA
    Annu Rev Biochem; 1995; 64():493-531. PubMed ID: 7574491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and regulation by steroids of the alpha, beta and gamma subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney.
    Renard S; Voilley N; Bassilana F; Lazdunski M; Barbry P
    Pflugers Arch; 1995 Jul; 430(3):299-307. PubMed ID: 7491252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-specific expression of amiloride-sensitive, Na(+)-conducting ion channels in the kidney.
    Ciampolillo F; McCoy DE; Green RB; Karlson KH; Dagenais A; Molday RS; Stanton BA
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1303-15. PubMed ID: 8897838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K.
    Palmer LG; Antonian L; Frindt G
    J Gen Physiol; 1994 Oct; 104(4):693-710. PubMed ID: 7836937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidermal growth factor inhibits amiloride-sensitive sodium absorption in renal collecting duct cells.
    Shen JP; Cotton CU
    Am J Physiol Renal Physiol; 2003 Jan; 284(1):F57-64. PubMed ID: 12388407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cell surface expression of voltage-dependent Nav1.7 sodium channels: mRNA stability and posttranscriptional control in adrenal chromaffin cells.
    Wada A; Yanagita T; Yokoo H; Kobayashi H
    Front Biosci; 2004 May; 9():1954-66. PubMed ID: 14977601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel.
    Garty H; Benos DJ
    Physiol Rev; 1988 Apr; 68(2):309-73. PubMed ID: 2451832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C.
    Vijayaragavan K; Boutjdir M; Chahine M
    J Neurophysiol; 2004 Apr; 91(4):1556-69. PubMed ID: 14657190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the beta 2 subunit of L-type voltage-dependent calcium channels.
    Gerhardstein BL; Puri TS; Chien AJ; Hosey MM
    Biochemistry; 1999 Aug; 38(32):10361-70. PubMed ID: 10441130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.
    Ishikawa T; Marunaka Y; Rotin D
    J Gen Physiol; 1998 Jun; 111(6):825-46. PubMed ID: 9607939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.