These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 85693)

  • 41. Mitochondrial function and dysfunction within the optic nerve.
    Sadun AA; Carelli V
    Arch Ophthalmol; 2003 Sep; 121(9):1342-3. PubMed ID: 12963627
    [No Abstract]   [Full Text] [Related]  

  • 42. Metabolism of myelin lipids in the developing brain.
    Davison AN
    Biochem Soc Symp; 1972; (35):129-39. PubMed ID: 4614799
    [No Abstract]   [Full Text] [Related]  

  • 43. RNA and axonal flow. Biochemical and autoradiographic study in the rabbit optic system.
    Autilio-Gambetti L; Gambetti P; Shafer B
    Brain Res; 1973 Apr; 53(2):387-98. PubMed ID: 4122357
    [No Abstract]   [Full Text] [Related]  

  • 44. Maturation of oligodendroglia and myelinogenesis in rat optic nerve: a quantitative histochemical study.
    Hirose G; Bass NH
    J Comp Neurol; 1973 Nov; 152(2):201-9. PubMed ID: 4761659
    [No Abstract]   [Full Text] [Related]  

  • 45. Action potential conduction and sodium channel content in the optic nerve of the myelin-deficient rat.
    Utzschneider DA; Thio C; Sontheimer H; Ritchie JM; Waxman SG; Kocsis JD
    Proc Biol Sci; 1993 Dec; 254(1341):245-50. PubMed ID: 8108457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuroglia of the optic nerve in the course of myelination.
    Wender M; Kozik M; Sniatała-Kamasa M; Mularek O; Pankrac J
    J Hirnforsch; 1979; 20(2):191-200. PubMed ID: 231622
    [No Abstract]   [Full Text] [Related]  

  • 47. Clathrin is axonally transported as part of slow component b: the microfilament complex.
    Garner JA; Lasek RJ
    J Cell Biol; 1981 Jan; 88(1):172-8. PubMed ID: 6162851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Axonal transport of a clathrin uncoating ATPase (HSC70): a role for HSC70 in the modulation of coated vesicle assembly in vivo.
    de Waegh S; Brady ST
    J Neurosci Res; 1989 Aug; 23(4):433-40. PubMed ID: 2475643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling.
    Yin X; Kidd GJ; Ohno N; Perkins GA; Ellisman MH; Bastian C; Brunet S; Baltan S; Trapp BD
    J Cell Biol; 2016 Nov; 215(4):531-542. PubMed ID: 27872255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in components of fast axonally transported proteins in the optic nerves of diabetic rabbits.
    Tsukada T; Chihara E
    Invest Ophthalmol Vis Sci; 1986 Jul; 27(7):1115-22. PubMed ID: 2424863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The intra-axonal transport of polypeptide H: evidence for a fifth (very slow) group of transported proteins in the retinal ganglion cells of the rabbit.
    Willard MB; Hulebak KL
    Brain Res; 1977 Nov; 136(2):289-306. PubMed ID: 72586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A histochemical study of adenosine triphosphatase in neuroglia.
    Fernando SD; Blunt MJ
    J Anat; 1970 Sep; 107(Pt 2):209-14. PubMed ID: 4249725
    [No Abstract]   [Full Text] [Related]  

  • 53. Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve.
    Balaratnasingam C; Morgan WH; Johnstone V; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2824-38. PubMed ID: 19168905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonpermissive nature of fish optic nerves to axonal growth is due to presence of myelin-associated growth inhibitors.
    Sivron T; Schwartz M
    Exp Neurol; 1994 Dec; 130(2):411-3. PubMed ID: 7867770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axoplasmic transport in the optic nerve and tract of the rabbit: a biochemical and radioautographic study.
    Sjöstrand J; Karlsson JO
    J Neurochem; 1969 Jun; 16(3):833-44. PubMed ID: 4186224
    [No Abstract]   [Full Text] [Related]  

  • 56. Axonal transport of taurine along neonatal and young adult rat optic axons.
    Politis MJ; Ingoglia NA
    Brain Res; 1979 Apr; 166(2):221-31. PubMed ID: 85473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphatidic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine.
    Kahn DW; Morell P
    J Neurochem; 1988 May; 50(5):1542-50. PubMed ID: 2834516
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Axonal transport of the Ca2+-dependent protein modulator of 3':5'-cyclic-AMP phosphodiesterase in the rabbit visual system.
    Erickson PF; Seamon KB; Moore BW; Lasher RS; Minier LN
    J Neurochem; 1980 Jul; 35(1):242-8. PubMed ID: 6161217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Axonal transport of phospholipids in rat visual system.
    Toews AD; Goodrum JF; Morell P
    J Neurochem; 1979 Apr; 32(4):1165-73. PubMed ID: 85696
    [No Abstract]   [Full Text] [Related]  

  • 60. The effects of inhibitors of protein synthesis on incorporation of lipids into myelin.
    Benjamins JA; Herschkowitz N; Robinson J; McKhann GM
    J Neurochem; 1971 May; 18(5):729-38. PubMed ID: 5145149
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.