These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8569683)

  • 1. Overexpression of MerT, the mercuric ion transport protein of transposon Tn501, and genetic selection of mercury hypersensitivity mutations.
    Hobman JL; Brown NL
    Mol Gen Genet; 1996 Jan; 250(1):129-34. PubMed ID: 8569683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins.
    Morby AP; Hobman JL; Brown NL
    Mol Microbiol; 1995 Jul; 17(1):25-35. PubMed ID: 7476206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding.
    Hamlett NV; Landale EC; Davis BH; Summers AO
    J Bacteriol; 1992 Oct; 174(20):6377-85. PubMed ID: 1328156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions.
    Lund PA; Brown NL
    Gene; 1987; 52(2-3):207-14. PubMed ID: 3038684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501 mer operon.
    Schue M; Glendinning KJ; Hobman JL; Brown NL
    Biometals; 2008 Apr; 21(2):107-16. PubMed ID: 17457514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the operon responsible for broad-spectrum mercury resistance in Streptomyces lividans 1326.
    Brünker P; Rother D; Sedlmeier R; Klein J; Mattes R; Altenbuchner J
    Mol Gen Genet; 1996 Jun; 251(3):307-15. PubMed ID: 8676873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of involvement of merT and merP in methylmercury transport in mercury resistant Pseudomonas K-62.
    Kiyono M; Omura T; Fujimori H; Pan-Hou H
    FEMS Microbiol Lett; 1995 May; 128(3):301-6. PubMed ID: 7781979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes.
    Misra TK; Brown NL; Fritzinger DC; Pridmore RD; Barnes WM; Haberstroh L; Silver S
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):5975-9. PubMed ID: 6091128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?
    Wilson JR; Leang C; Morby AP; Hobman JL; Brown NL
    FEBS Lett; 2000 Apr; 472(1):78-82. PubMed ID: 10781809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and characterization of mercury-independent activation mutants of the Tn501 transcriptional regulator, MerR.
    Parkhill J; Lawley B; Hobman JL; Brown NL
    Microbiology (Reading); 1998 Oct; 144 ( Pt 10)():2855-2864. PubMed ID: 9802027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR.
    Parkhill J; Brown NL
    Nucleic Acids Res; 1990 Sep; 18(17):5157-62. PubMed ID: 2169606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli.
    Sone Y; Nakamura R; Pan-Hou H; Itoh T; Kiyono M
    Biol Pharm Bull; 2013; 36(11):1835-41. PubMed ID: 23985830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of MerT and MerP from Pseudomonas K-62 plasmid pMR26 in the transport of phenylmercury.
    Kiyono M; Uno Y; Omura T; Pan-Hou H
    Biol Pharm Bull; 2000 Mar; 23(3):279-82. PubMed ID: 10726879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistance.
    Sahlman L; Wong W; Powlowski J
    J Biol Chem; 1997 Nov; 272(47):29518-26. PubMed ID: 9368013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system.
    Brown NL; Misra TK; Winnie JN; Schmidt A; Seiff M; Silver S
    Mol Gen Genet; 1986 Jan; 202(1):143-51. PubMed ID: 3007931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tn5044-conferred mercury resistance depends on temperature: the complexity of the character of thermosensitivity.
    Kholodii G; Bogdanova E
    Genetica; 2002 Jun; 115(2):233-41. PubMed ID: 12403178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction pattern and polypeptide homology among plasmid-borne mercury resistance determinants.
    Jobling MG; Peters SE; Ritchie DA
    Plasmid; 1988 Sep; 20(2):106-12. PubMed ID: 2853390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons.
    Helmann JD; Wang Y; Mahler I; Walsh CT
    J Bacteriol; 1989 Jan; 171(1):222-9. PubMed ID: 2492496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004.
    Brown NL; Barrett SR; Camakaris J; Lee BT; Rouch DA
    Mol Microbiol; 1995 Sep; 17(6):1153-66. PubMed ID: 8594334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure and expression of the mercury-resistance transposon Tn501.
    Brown NL
    Folia Biol (Praha); 1984; 30 Spec No():7-17. PubMed ID: 6327411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.