These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 85697)

  • 41. Mediation of norepinephrine-stimulated cyclic AMP accumulation by adrenergic receptors in hypothalamic and preoptic area slices: effects of estradiol.
    Etgen AM; Petitti N
    J Neurochem; 1987 Dec; 49(6):1732-9. PubMed ID: 2445916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of beta-adrenergic receptors in the cerebral cortex.
    Molinoff PB; Sporn JR; Wolfe BB; Harden TK
    Adv Cyclic Nucleotide Res; 1978; 9():465-83. PubMed ID: 208390
    [No Abstract]   [Full Text] [Related]  

  • 43. Proceedings: Adenosine 3',5'-monophosphate in cerebral cortical slices from guinea pig and rat: effect of benzodiazepines.
    Schultz J
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R89. PubMed ID: 4367365
    [No Abstract]   [Full Text] [Related]  

  • 44. Noradrenergic subsensitivity and supersensitivity of the cerebral cortex after reserpine treatment.
    Palmer DS; French SW; Narod ME
    J Pharmacol Exp Ther; 1976 Jan; 196(1):167-71. PubMed ID: 173828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cyclic AMP in the rat cerebral cortex after activation of noradrenaline neurons of the locus coeruleus.
    Van der Heyden JA; Sebens JB
    J Neurochem; 1979 Feb; 32(2):463-8. PubMed ID: 216776
    [No Abstract]   [Full Text] [Related]  

  • 46. The accumulation of cyclic AMP and cyclic GMP in guinea pig brain slices. Effect of calcium ions, norepinephrine and adenosine.
    Ohga Y; Daly JW
    Biochim Biophys Acta; 1977 Jun; 498(1):46-60. PubMed ID: 195635
    [No Abstract]   [Full Text] [Related]  

  • 47. Regulation of alpha and beta components of noradrenergic cyclic AMP response in cortical slices.
    Stone EA; McEwen BS; Herrera AS; Carr KD
    Eur J Pharmacol; 1987 Sep; 141(3):347-56. PubMed ID: 2822449
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of lithium and desipramine administration on agonist-stimulated inositol phosphate accumulation in rat cerebral cortex.
    Newman ME; Lerer B
    Biochem Pharmacol; 1988 May; 37(10):1991-5. PubMed ID: 3377807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on the alpha and beta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices.
    Stone EA; Platt JE; Herrera AS; Kirk KL
    J Pharmacol Exp Ther; 1986 Jun; 237(3):702-7. PubMed ID: 3012065
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lithium effects on noradrenergic-linked adenylate cyclase activity in intact rat brain: an in vivo microdialysis study.
    Masana MI; Bitran JA; Hsiao JK; Mefford IN; Potter WZ
    Brain Res; 1991 Jan; 538(2):333-6. PubMed ID: 1849439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions between catecholamines, methyl xanthines and adenosine in regulation of cyclic AMP accumulation in hamster adipocytes.
    Schimmel RJ
    Biochim Biophys Acta; 1980 Apr; 629(1):83-94. PubMed ID: 6154485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein phosphorylation as a possible mechanism in neuronal adaptation.
    Holmes H; Rodnight R
    Biochem Soc Trans; 1978; 6(5):863-5. PubMed ID: 217755
    [No Abstract]   [Full Text] [Related]  

  • 53. Regulation of cyclic AMP accumulation by peptide hormone receptors in immunocytochemically defined astroglial cells.
    Evans T; McCarthy KD; Harden TK
    J Neurochem; 1984 Jul; 43(1):131-8. PubMed ID: 6202841
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cyclic AMP levels in slices of epileptic cortex of the rat: effects of glutamate and 3-isobutyl-1-methylxanthine.
    Hattori Y; Moriwaki A; Hayashi Y; Hori Y
    Acta Med Okayama; 1986 Oct; 40(5):277-80. PubMed ID: 2431600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uptake and release of norepinephrine by slices of rat cerebral cortex: effect of agents that increase cyclic AMP levels.
    Walker JE; Goodman P; Jacobs D; Lewin E
    Neurology; 1978 Sep; 28(9 Pt 1):900-4. PubMed ID: 211464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cyclic adenosine 3',5'-monophosphate in guinea-pig cerebral cortical slices: studies on the role of adenosine.
    Schultz J
    J Neurochem; 1975 Jun; 24(6):1237-42. PubMed ID: 165264
    [No Abstract]   [Full Text] [Related]  

  • 57. Cocaine and desipramine antagonize the clonidine-induced inhibition of [3H]-noradrenaline release from the rat cerebral cortex [proceedings].
    Dubocovich ML; Langer SZ; Pelayo F
    Br J Pharmacol; 1979 Nov; 67(3):417P-418P. PubMed ID: 497546
    [No Abstract]   [Full Text] [Related]  

  • 58. Strain differences in responsiveness of norepinephrine-sensitive adenosine 3',5'-monophosphate-generating systems in rat brain slices after intraventricular administration of 6-hydroxydopamine.
    Skolnick P; Daly JW
    Eur J Pharmacol; 1977 Jan; 41(2):145-52. PubMed ID: 188662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyclic AMP and cyclic GMP accumulation in vitro in brain regions of young, old and aged rats.
    Schmidt MJ; Thornberry JF
    Brain Res; 1978 Jan; 139(1):169-77. PubMed ID: 202373
    [No Abstract]   [Full Text] [Related]  

  • 60. The role of calcium ions in accumulation of cyclic adenosine monophosphate elicited by alpha and beta adrenergic agonists in rat brain slices.
    Schwabe U; Daly JW
    J Pharmacol Exp Ther; 1977 Jul; 202(1):134-43. PubMed ID: 17724
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.