These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 856986)

  • 1. Trans-proximal tubular steady-state concentration differences studied by micro-puncture and tissue content of sodium and chloride at varying intraluminal sodium concentrations in vitro in rat kidney cortex slices: evidence for a multisite sodium transport system.
    Györy AZ; Roby H
    J Physiol; 1977 Mar; 265(3):637-55. PubMed ID: 856986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of active sodium transport in rat proximal tubules and its variation by cardiac glycosides at zero net volume and ion fluxes. Evidence for a multisite sodium transport system.
    Györy AZ; Lingard JM
    J Physiol; 1976 May; 257(2):257-74. PubMed ID: 950594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro.
    Wilson FA; Burckhardt G; Murer H; Rumrich G; Ullrich KJ
    J Clin Invest; 1981 Apr; 67(4):1141-50. PubMed ID: 7204571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules.
    Schafer JA; Troutman SL; Andreoli TE
    J Gen Physiol; 1974 Nov; 64(5):582-607. PubMed ID: 4443793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules.
    Grantham JJ; Kurg MB; Obloff J
    J Clin Invest; 1970 Oct; 49(10):1815-26. PubMed ID: 5456795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of Na+ transport in Necturus proximal tubule.
    Spring KR; Giebisch G
    J Gen Physiol; 1977 Sep; 70(3):307-28. PubMed ID: 894258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport.
    Rocha AS; Kokko JP
    J Clin Invest; 1973 Mar; 52(3):612-23. PubMed ID: 4685086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.
    Kawamura S; Imai M; Seldin DW; Kukko JP
    J Clin Invest; 1975 Jun; 55(6):1269-77. PubMed ID: 1133172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of high Na and Cl concentrations on rat proximal volume and Na fluxes at zero tubular flow.
    Gyory AZ; Ng J; McNeil D
    Clin Exp Pharmacol Physiol; 1987 Sep; 14(9):685-93. PubMed ID: 3442952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
    Green R; Giebisch G
    Am J Physiol; 1975 Nov; 229(5):1205-15. PubMed ID: 1200138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of ion fluxes on fluid transport by rat proximal tubule.
    Bomsztyk K; Wright FS
    Am J Physiol; 1986 Apr; 250(4 Pt 2):F680-9. PubMed ID: 3083697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A component of fluid absorption linked to passive ion flows in the superficial pars recta.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1975 Oct; 66(4):445-71. PubMed ID: 1181377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney.
    Whittembury G; Diezi F; Diezi J; Spring K; Giebisch G
    Kidney Int; 1975 May; 7(5):293-30. PubMed ID: 237133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal tubular Na, Cl, and HCO3 reabsorption and renal oxygen consumption.
    Weinstein SW; Klose R; Szyjewicz J
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F151-7. PubMed ID: 6331199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump.
    Soltoff SP; Mandel LJ
    J Gen Physiol; 1984 Oct; 84(4):623-42. PubMed ID: 6094705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proxmal tubules.
    Imai M; Kokko JP
    J Clin Invest; 1972 Feb; 51(2):314-25. PubMed ID: 5009115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of flow rate and potassium intake on distal tubular potassium transfer.
    Khuri RN; Strieder WN; Giebisch G
    Am J Physiol; 1975 Apr; 228(4):1249-61. PubMed ID: 1130523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium, bicarbonate, and chloride absorption by the proximal tubule.
    Rector FC
    Am J Physiol; 1983 May; 244(5):F461-71. PubMed ID: 6303131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells.
    Degnan KJ; Karnaky KJ; Zadunaisky JA
    J Physiol; 1977 Sep; 271(1):155-91. PubMed ID: 915831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.