These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 8570048)
1. Classification of brain compartments and head injury lesions by neural networks applied to MRI. Kischell ER; Kehtarnavaz N; Hillman GR; Levin H; Lilly M; Kent TA Neuroradiology; 1995 Oct; 37(7):535-41. PubMed ID: 8570048 [TBL] [Abstract][Full Text] [Related]
2. Long-term follow up of children with head injuries-classified as "good recovery" using the Glasgow Outcome Scale: neurological, neuropsychological and magnetic resonance imaging results. Koelfen W; Freund M; Dinter D; Schmidt B; Koenig S; Schultze C Eur J Pediatr; 1997 Mar; 156(3):230-5. PubMed ID: 9083767 [TBL] [Abstract][Full Text] [Related]
3. MRI of head injury using FLAIR. Ashikaga R; Araki Y; Ishida O Neuroradiology; 1997 Apr; 39(4):239-42. PubMed ID: 9144669 [TBL] [Abstract][Full Text] [Related]
4. Automated detection and characterization of multiple sclerosis lesions in brain MR images. Goldberg-Zimring D; Achiron A; Miron S; Faibel M; Azhari H Magn Reson Imaging; 1998 Apr; 16(3):311-8. PubMed ID: 9621972 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of magnetic resonance and CT scan imaging in cases of severe head injury. Ogawa T; Sekino H; Uzura M; Sakamoto T; Taguchi Y; Yamaguchi Y; Hayashi T; Yamanaka I; Oohama N; Imaki S Acta Neurochir Suppl (Wien); 1992; 55():8-10. PubMed ID: 1414552 [TBL] [Abstract][Full Text] [Related]
6. Quantitative MRI of the brain in children with sickle cell disease reveals abnormalities unseen by conventional MRI. Steen RG; Reddick WE; Mulhern RK; Langston JW; Ogg RJ; Bieberich AA; Kingsley PB; Wang WC J Magn Reson Imaging; 1998; 8(3):535-43. PubMed ID: 9626865 [TBL] [Abstract][Full Text] [Related]
7. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. Reddick WE; Glass JO; Cook EN; Elkin TD; Deaton RJ IEEE Trans Med Imaging; 1997 Dec; 16(6):911-8. PubMed ID: 9533591 [TBL] [Abstract][Full Text] [Related]
8. MR-based brain and cerebrospinal fluid measurement after traumatic brain injury: correlation with neuropsychological outcome. Blatter DD; Bigler ED; Gale SD; Johnson SC; Anderson CV; Burnett BM; Ryser D; Macnamara SE; Bailey BJ AJNR Am J Neuroradiol; 1997 Jan; 18(1):1-10. PubMed ID: 9010514 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Alzheimer's disease by analysis of MR images using multilayer perceptrons and Kohonen SOM classifiers as an alternative to the ADC maps. dos Santos WP; de Souza RE; dos Santos Filho PB Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2118-21. PubMed ID: 18002406 [TBL] [Abstract][Full Text] [Related]
10. Segmentation of magnetic resonance images using an artificial neural network. Piraino DW; Amartur SC; Richmond BJ; Schils JP; Thome JM; Weber PB Proc Annu Symp Comput Appl Med Care; 1991; ():470-2. PubMed ID: 1807645 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya-Gennarelli model. Levin HS; Mendelsohn D; Lilly MA; Yeakley J; Song J; Scheibel RS; Harward H; Fletcher JM; Kufera JA; Davidson KC; Bruce D Neurosurgery; 1997 Mar; 40(3):432-40; discussion 440-1. PubMed ID: 9055281 [TBL] [Abstract][Full Text] [Related]
12. Imaging of inner cerebral trauma. Birbamer G; Gerstenbrand F; Aichner F; Burtscher J; Chemelli A; Puffer P; De Bartolo M; Rifici C; Bramanti P Acta Neurol (Napoli); 1994 Jun; 16(3):114-20. PubMed ID: 7992660 [TBL] [Abstract][Full Text] [Related]
13. A system for computing neuromorphometry from magnetic resonance images. Greenshields IR; DiMario F Comput Biol Med; 1999 May; 29(3):157-73. PubMed ID: 10390137 [TBL] [Abstract][Full Text] [Related]
14. Quantitation of grey matter, white matter, and cerebrospinal fluid from spin-echo magnetic resonance images using an artificial neural network technique. Raff U; Scherzinger AL; Vargas PF; Simon JH Med Phys; 1994 Dec; 21(12):1933-42. PubMed ID: 7700201 [TBL] [Abstract][Full Text] [Related]
15. Late childhood changes in brain morphology observable with MRI. Jernigan TL; Tallal P Dev Med Child Neurol; 1990 May; 32(5):379-85. PubMed ID: 2354751 [TBL] [Abstract][Full Text] [Related]
16. Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. Gale SD; Baxter L; Roundy N; Johnson SC J Neurol Neurosurg Psychiatry; 2005 Jul; 76(7):984-8. PubMed ID: 15965207 [TBL] [Abstract][Full Text] [Related]
17. White matter abnormalities in autism detected through transverse relaxation time imaging. Hendry J; DeVito T; Gelman N; Densmore M; Rajakumar N; Pavlosky W; Williamson PC; Thompson PM; Drost DJ; Nicolson R Neuroimage; 2006 Feb; 29(4):1049-57. PubMed ID: 16214373 [TBL] [Abstract][Full Text] [Related]
18. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Wright IC; McGuire PK; Poline JB; Travere JM; Murray RM; Frith CD; Frackowiak RS; Friston KJ Neuroimage; 1995 Dec; 2(4):244-52. PubMed ID: 9343609 [TBL] [Abstract][Full Text] [Related]
19. Validation of partial tissue segmentation of single-channel magnetic resonance images of the brain. Grabowski TJ; Frank RJ; Szumski NR; Brown CK; Damasio H Neuroimage; 2000 Dec; 12(6):640-56. PubMed ID: 11112396 [TBL] [Abstract][Full Text] [Related]