BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8570085)

  • 1. Calcium-dependent free radical generation in cultured retinal neurons injured by kainate.
    Dutrait N; Culcasi M; Cazevieille C; Pietri S; Tordo P; Bonne C; Muller A
    Neurosci Lett; 1995 Sep; 198(1):13-6. PubMed ID: 8570085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of free radical formation fail to attenuate direct beta-amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures.
    Lockhart BP; Benicourt C; Junien JL; Privat A
    J Neurosci Res; 1994 Nov; 39(4):494-505. PubMed ID: 7533847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection by ESR of DMPO hydroxyl adduct formation from islets of Langerhans.
    Pieper GM; Felix CC; Kalyanaraman B; Turk M; Roza AM
    Free Radic Biol Med; 1995 Aug; 19(2):219-25. PubMed ID: 7649493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-dependent kainate excitotoxicity in the chick embryonic neural retina ex vivo.
    Burgos JS; Barat A; Ramirez G
    Neuroreport; 2000 Nov; 11(17):3855-8. PubMed ID: 11117503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages.
    Pietraforte D; Tritarelli E; Testa U; Minetti M
    J Leukoc Biol; 1994 Feb; 55(2):175-82. PubMed ID: 8301214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors.
    Martinez-Palma L; Pehar M; Cassina P; Peluffo H; Castellanos R; Anesetti G; Beckman JS; Barbeito L
    Neurotox Res; 2003; 5(6):399-406. PubMed ID: 14715442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA-dependent superoxide production and neurotoxicity.
    Lafon-Cazal M; Pietri S; Culcasi M; Bockaert J
    Nature; 1993 Aug; 364(6437):535-7. PubMed ID: 7687749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between direct ESR spectroscopic measurements and electromechanical and biochemical assessments of exogenous free radical injury in isolated rat cardiac myocytes.
    Courtois M; Maupoil V; Fantini E; Durot I; Javouhey-Donzel A; Athias P; Grynberg A; Rochette L
    Free Radic Biol Med; 1998 Jan; 24(1):121-31. PubMed ID: 9436621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial cells as a source of oxygen-free radicals. An ESR study.
    Arroyo CM; Carmichael AJ; Bouscarel B; Liang JH; Weglicki WB
    Free Radic Res Commun; 1990; 9(3-6):287-96. PubMed ID: 2167267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High vulnerability of GABA-immunoreactive neurons to kainate in rat retinal cultures: correlation with the kainate-stimulated cobalt uptake.
    Yoon YH; Jeong KH; Shim MJ; Koh JY
    Brain Res; 1999 Mar; 823(1-2):33-41. PubMed ID: 10095009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoclast radical interactions: NADPH causes pulsatile release of NO and stimulates superoxide production.
    Silverton SF; Mesaros S; Markham GD; Malinski T
    Endocrinology; 1995 Nov; 136(11):5244-7. PubMed ID: 7588266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production.
    Cossenza M; Cadilhe DV; Coutinho RN; Paes-de-Carvalho R
    J Neurochem; 2006 Jun; 97(5):1481-93. PubMed ID: 16606372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 2-amino-7-phosphonohepatanoic acid, melatonin or NG-nitro-L-arginine on cyanide or N-methyl-D-aspartate-induced neurotoxicity in rat cortical cells.
    Yamamoto H; Tang H
    Toxicol Lett; 1998 Jan; 94(1):13-8. PubMed ID: 9544694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of perinatal cerebral injury in fetus and newborn.
    Delivoria-Papadopoulos M; Mishra OP
    Ann N Y Acad Sci; 2000; 900():159-68. PubMed ID: 10818402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate receptor-induced cyclic GMP formation in primary cultures of mesencephalic neurons.
    Ambrosini A; Racagni G
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1098-103. PubMed ID: 7686744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxypurinol attenuates hydroxyl radical production during ischemia/reperfusion injury of the rat cerebral cortex: an ESR study.
    Phillis JW; Sen S
    Brain Res; 1993 Nov; 628(1-2):309-12. PubMed ID: 8313161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues.
    Zweier JL; Kuppusamy P; Lutty GA
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):4046-50. PubMed ID: 2836868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of choline acetyltransferase by excitatory amino acids as a possible mechanism for cholinergic dysfunction in the central nervous system.
    Loureiro-Dos-Santos NE; Reis RA; Kubrusly RC; de Almeida OM; Gardino PF; de Mello MC; de Mello FG
    J Neurochem; 2001 May; 77(4):1136-44. PubMed ID: 11359879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxypurinol inhibits free radical release from the cerebral cortex of closed head injured rats.
    Sen S; Goldman H; Morehead M; Murphy S; Phillis JW
    Neurosci Lett; 1993 Nov; 162(1-2):117-20. PubMed ID: 8121612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.