BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8570185)

  • 41. Efficient initiation of mammalian mRNA translation at a CUG codon.
    Dasso MC; Jackson RJ
    Nucleic Acids Res; 1989 Aug; 17(16):6485-97. PubMed ID: 2780285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilization of non-AUG initiation codons in a flow cytometric method for efficient selection of recombinant cell lines.
    Cairns VR; DeMaria CT; Poulin F; Sancho J; Liu P; Zhang J; Campos-Rivera J; Karey KP; Estes S
    Biotechnol Bioeng; 2011 Nov; 108(11):2611-22. PubMed ID: 21618473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides.
    O'Neill RC; Minuk J; Cox ME; Braun PE; Gravel M
    J Neurosci Res; 1997 Oct; 50(2):248-57. PubMed ID: 9373034
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A bacterial homolog YciH of eukaryotic translation initiation factor eIF1 regulates stress-related gene expression and is unlikely to be involved in translation initiation fidelity.
    Osterman IA; Evfratov SA; Dzama MM; Pletnev PI; Kovalchuk SI; Butenko IO; Pobeguts OV; Golovina AY; Govorun VM; Bogdanov AA; Sergiev PV; Dontsova OA
    RNA Biol; 2015; 12(9):966-71. PubMed ID: 26177339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Translation initiation and its deregulation during tumorigenesis.
    Watkins SJ; Norbury CJ
    Br J Cancer; 2002 Apr; 86(7):1023-7. PubMed ID: 11953842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast.
    Eisenberg AR; Higdon AL; Hollerer I; Fields AP; Jungreis I; Diamond PD; Kellis M; Jovanovic M; Brar GA
    Cell Syst; 2020 Aug; 11(2):145-160.e5. PubMed ID: 32710835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor.
    Bugler B; Amalric F; Prats H
    Mol Cell Biol; 1991 Jan; 11(1):573-7. PubMed ID: 1986249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translation regulatory factor BZW1 regulates preimplantation embryo development and compaction by restricting global non-AUG Initiation.
    Zhang J; Pi SB; Zhang N; Guo J; Zheng W; Leng L; Lin G; Fan HY
    Nat Commun; 2022 Nov; 13(1):6621. PubMed ID: 36333315
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of basic fibroblast growth factor NH2 terminus in nuclear accumulation.
    Patry V; Arnaud E; Amalric F; Prats H
    Growth Factors; 1994; 11(3):163-74. PubMed ID: 7734142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons.
    Florkiewicz RZ; Sommer A
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):3978-81. PubMed ID: 2726761
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosynthesis of human fibroblast growth factor-5.
    Bates B; Hardin J; Zhan X; Drickamer K; Goldfarb M
    Mol Cell Biol; 1991 Apr; 11(4):1840-5. PubMed ID: 2005884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms.
    Couderc B; Prats H; Bayard F; Amalric F
    Cell Regul; 1991 Sep; 2(9):709-18. PubMed ID: 1660310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of the 210-amino acid recombinant basic fibroblast growth factor form (FGF-2).
    Patry V; Bugler B; Amalric F; Promé JC; Prats H
    FEBS Lett; 1994 Jul; 349(1):23-8. PubMed ID: 8045296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes.
    Patry V; Bugler B; Maret A; Potier M; Prats H
    Biochem J; 1997 Aug; 326 ( Pt 1)(Pt 1):259-64. PubMed ID: 9337877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Int-2: a member of the fibroblast growth factor family has different subcellular fates depending on the choice of initiation codon.
    Dickson C; Acland P
    Enzyme; 1990; 44(1-4):225-34. PubMed ID: 1966839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer.
    Chu J; Cargnello M; Topisirovic I; Pelletier J
    Trends Cell Biol; 2016 Dec; 26(12):918-933. PubMed ID: 27426745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3.
    Kiefer P; Acland P; Pappin D; Peters G; Dickson C
    EMBO J; 1994 Sep; 13(17):4126-36. PubMed ID: 8076608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor progression and metastasis: role of translational deregulation.
    Nasr Z; Pelletier J
    Anticancer Res; 2012 Aug; 32(8):3077-84. PubMed ID: 22843876
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High levels of CUG-initiated FGF-2 expression cause chromatin compaction, decreased cardiomyocyte mitosis, and cell death.
    Hirst CJ; Herlyn M; Cattini PA; Kardami E
    Mol Cell Biochem; 2003 Apr; 246(1-2):111-6. PubMed ID: 12841351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translation initiation factors and their relevance in cancer.
    de la Parra C; Walters BA; Geter P; Schneider RJ
    Curr Opin Genet Dev; 2018 Feb; 48():82-88. PubMed ID: 29153484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.