BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8570524)

  • 1. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin.
    Luessen HL; Verhoef JC; Borchard G; Lehr CM; de Boer AG; Junginger HE
    Pharm Res; 1995 Sep; 12(9):1293-8. PubMed ID: 8570524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypsin inhibition, calcium and zinc ion binding of starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid) mixtures for peroral peptide drug delivery.
    Ameye D; Voorspoels J; Foreman P; Tsai J; Richardson P; Geresh S; Remon JP
    J Control Release; 2001 Aug; 75(3):357-64. PubMed ID: 11489322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbomer inhibits tryptic proteolysis of luteinizing hormone-releasing hormone and N-alpha-benzoyl-L-arginine ethyl ester by binding the enzyme.
    Walker GF; Ledger R; Tucker IG
    Pharm Res; 1999 Jul; 16(7):1074-80. PubMed ID: 10450933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycarbophil-cysteine conjugates as platforms for oral polypeptide delivery systems.
    Bernkop-Schnürch A; Thaler SC
    J Pharm Sci; 2000 Jul; 89(7):901-9. PubMed ID: 10861591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polyacrylic polymers on the degradation of insulin and peptide drugs by chymotrypsin and trypsin.
    Bai JP; Chang LL; Guo JH
    J Pharm Pharmacol; 1996 Jan; 48(1):17-21. PubMed ID: 8722488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug in the rat.
    Lehr CM; Bouwstra JA; Kok W; De Boer AG; Tukker JJ; Verhoef JC; Breimer DD; Junginger HE
    J Pharm Pharmacol; 1992 May; 44(5):402-7. PubMed ID: 1359054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mucoadhesive polymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo.
    Luessen HL; de Leeuw BJ; Langemeÿer MW; de Boer AB; Verhoef JC; Junginger HE
    Pharm Res; 1996 Nov; 13(11):1668-72. PubMed ID: 8956332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins.
    Bernkop-Schnürch A
    J Control Release; 1998 Mar; 52(1-2):1-16. PubMed ID: 9685931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of a novel peroral peptide drug delivery system.
    Dorkoosh FA; Verhoef JC; Borchard G; Rafiee-Tehrani M; Junginger HE
    J Control Release; 2001 Apr; 71(3):307-18. PubMed ID: 11295223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Improvement of drug bioavailability using protease inhibitors].
    Zhaopeng H; Kimura G; Yoshikawa Y; Takada K
    Nihon Rinsho; 1998 Mar; 56(3):595-600. PubMed ID: 9549342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anionic mucoadhesive polymers as auxiliary agents for the peroral administration of (poly)peptide drugs: influence of the gastric juice.
    Bernkop-Schnürch A; Gilge B
    Drug Dev Ind Pharm; 2000 Feb; 26(2):107-13. PubMed ID: 10697747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro.
    Marschütz MK; Bernkop-Schnürch A
    Biomaterials; 2000 Jul; 21(14):1499-507. PubMed ID: 10872779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and in vitro evaluation of a mucoadhesive oral delivery system for a model polypeptide antigen.
    Marschütz MK; Puttipipatkhachorn S; Bernkop-Schnürch A
    Pharmazie; 2001 Sep; 56(9):724-9. PubMed ID: 11593993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of an in vitro procedure for the determination of the enzymatic inhibition potency of multifunctional polymers.
    Ameye D; Voorspoels J; Remon JP; Demeester J; De Smedt SC
    J Control Release; 2000 Sep; 68(3):413-7. PubMed ID: 10974395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition.
    Ooya T; Eguchi M; Ozaki A; Yui N
    Int J Pharm; 2002 Aug; 242(1-2):47-54. PubMed ID: 12176224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiomers: development and in vitro evaluation of a peroral microparticulate peptide delivery system.
    Krauland AH; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2004 Mar; 57(2):181-7. PubMed ID: 15018973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase N.
    Bernkop-Schnürch A; Zarti H; Walker GF
    J Pharm Sci; 2001 Nov; 90(11):1907-14. PubMed ID: 11745748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin digestion of bovine cardiac troponin C in the presence and absence of calcium.
    McCubbin WD; Kay CM
    Can J Biochem Cell Biol; 1985 Aug; 63(8):812-23. PubMed ID: 2933134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and biological studies on synthetic peptide analogues of a low-affinity calcium-binding site of skeletal troponin C.
    Malik NA; Anantharamaiah GM; Gawish A; Cheung HC
    Biochim Biophys Acta; 1987 Jan; 911(2):221-30. PubMed ID: 3801495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates.
    Bernkop-Schnürch A; Krajicek ME
    J Control Release; 1998 Jan; 50(1-3):215-23. PubMed ID: 9685888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.