BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8570525)

  • 1. The intestinal transport mechanism of fluoroquinolones: inhibitory effect of ciprofloxacin, an enoxacin derivative, on the membrane potential-dependent uptake of enoxacin.
    Hirano T; Iseki K; Sato I; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K
    Pharm Res; 1995 Sep; 12(9):1299-303. PubMed ID: 8570525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic-diffusion potential-dependent transport of a new quinolone, sparfloxacin, across rat intestinal brush-border membrane.
    Iseki K; Hirano T; Tsuji K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K
    J Pharm Pharmacol; 1998 Jun; 50(6):627-34. PubMed ID: 9680072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes.
    Hirano T; Iseki K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K
    J Pharm Pharmacol; 1994 Aug; 46(8):676-9. PubMed ID: 7815283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pH dependent uptake of enoxacin by rat intestinal brush-border membrane vesicles.
    Iseki K; Hirano T; Fukushi Y; Kitamura Y; Miyazaki S; Takada M; Sugawara M; Saitoh H; Miyazaki K
    J Pharm Pharmacol; 1992 Sep; 44(9):722-6. PubMed ID: 1360522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport mechanisms of enoxacin in rat brush-border membrane of renal cortex: interaction with organic cation transport system and ionic diffusion potential dependent uptake.
    Hirano T; Iseki K; Sugawara M; Miyazaki S; Takada M; Miyazaki K
    Biol Pharm Bull; 1995 Feb; 18(2):342-6. PubMed ID: 7538004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles.
    Schron CM; Washington C; Blitzer BL
    J Clin Invest; 1985 Nov; 76(5):2030-3. PubMed ID: 4056063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH gradient effects on chloride transport across basolateral membrane vesicles from guinea-pig jejunum.
    Touzani K; Alvarado F; Vasseur M
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):385-400. PubMed ID: 9147326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat.
    Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y
    J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential dependency of glutamic acid transport in rabbit jejunal brush-border membrane vesicles: K+ and H+ effects.
    Berteloot A
    Biochim Biophys Acta; 1986 Oct; 861(3):447-56. PubMed ID: 2876728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active transport of taurine in rabbit jejunal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G65-72. PubMed ID: 2750911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of membrane surface potential on the uptake and the inhibition of cationic compounds in rat intestinal brush-border membrane vesicles and liposomes.
    Sugawara M; Oikawa H; Kobayashi M; Iseki K; Miyazaki K
    Biochim Biophys Acta; 1995 Mar; 1234(1):22-8. PubMed ID: 7880857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum.
    Wilson FA; Treanor LL
    Biochim Biophys Acta; 1979 Jul; 554(2):430-40. PubMed ID: 486452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-relationship study of the uptake of aliphatic polyamine compounds by rat intestinal brush-border membrane vesicles.
    Kobayashi M; Suruga S; Takeuchi H; Sugawara M; Iseki K; Miyazaki K
    J Pharm Pharmacol; 1997 May; 49(5):511-5. PubMed ID: 9178186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of tri- and dicarboxylic acids across the intestinal brush border membrane of calves.
    Wolffram S; Bisang B; Grenacher B; Scharrer E
    J Nutr; 1990 Jul; 120(7):767-74. PubMed ID: 2366111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Na(+)-H+ exchange in jejunal brush border membrane vesicles of spontaneously hypertensive rats.
    Acra S; Ghishan FK
    Gastroenterology; 1991 Aug; 101(2):430-6. PubMed ID: 1648526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related modifications of leucine uptake in brush-border membrane vesicles from rat jejunum.
    Sacchi VF; Magagnin S
    Mech Ageing Dev; 1992 May; 63(3):257-73. PubMed ID: 1614225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental maturation of calcium transport by rat brush border membrane vesicles.
    Ghishan FK; Arab N
    Pediatr Res; 1987 Aug; 22(2):173-6. PubMed ID: 3116493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-potential-dependent uptake of tryptamine by rat intestinal brush-border membrane vesicles.
    Sugawara M; Sasaki M; Iseki K; Miyazaki K
    Biochim Biophys Acta; 1992 Nov; 1111(2):145-50. PubMed ID: 1329960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate transport in human jejunal brush-border membrane vesicles.
    Borowitz SM; Ghishan FK
    Gastroenterology; 1989 Jan; 96(1):4-10. PubMed ID: 2909436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport characteristics of L-glutamate in human jejunal brush-border membrane vesicles.
    Harig JM; Rajendran VM; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1987 Oct; 903(2):358-64. PubMed ID: 2888487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.