These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 8570525)
1. The intestinal transport mechanism of fluoroquinolones: inhibitory effect of ciprofloxacin, an enoxacin derivative, on the membrane potential-dependent uptake of enoxacin. Hirano T; Iseki K; Sato I; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K Pharm Res; 1995 Sep; 12(9):1299-303. PubMed ID: 8570525 [TBL] [Abstract][Full Text] [Related]
2. Ionic-diffusion potential-dependent transport of a new quinolone, sparfloxacin, across rat intestinal brush-border membrane. Iseki K; Hirano T; Tsuji K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K J Pharm Pharmacol; 1998 Jun; 50(6):627-34. PubMed ID: 9680072 [TBL] [Abstract][Full Text] [Related]
3. The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes. Hirano T; Iseki K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K J Pharm Pharmacol; 1994 Aug; 46(8):676-9. PubMed ID: 7815283 [TBL] [Abstract][Full Text] [Related]
4. The pH dependent uptake of enoxacin by rat intestinal brush-border membrane vesicles. Iseki K; Hirano T; Fukushi Y; Kitamura Y; Miyazaki S; Takada M; Sugawara M; Saitoh H; Miyazaki K J Pharm Pharmacol; 1992 Sep; 44(9):722-6. PubMed ID: 1360522 [TBL] [Abstract][Full Text] [Related]
5. Transport mechanisms of enoxacin in rat brush-border membrane of renal cortex: interaction with organic cation transport system and ionic diffusion potential dependent uptake. Hirano T; Iseki K; Sugawara M; Miyazaki S; Takada M; Miyazaki K Biol Pharm Bull; 1995 Feb; 18(2):342-6. PubMed ID: 7538004 [TBL] [Abstract][Full Text] [Related]
6. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles. Schron CM; Washington C; Blitzer BL J Clin Invest; 1985 Nov; 76(5):2030-3. PubMed ID: 4056063 [TBL] [Abstract][Full Text] [Related]
7. pH gradient effects on chloride transport across basolateral membrane vesicles from guinea-pig jejunum. Touzani K; Alvarado F; Vasseur M J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):385-400. PubMed ID: 9147326 [TBL] [Abstract][Full Text] [Related]
8. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat. Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959 [TBL] [Abstract][Full Text] [Related]
9. Membrane potential dependency of glutamic acid transport in rabbit jejunal brush-border membrane vesicles: K+ and H+ effects. Berteloot A Biochim Biophys Acta; 1986 Oct; 861(3):447-56. PubMed ID: 2876728 [TBL] [Abstract][Full Text] [Related]
10. Active transport of taurine in rabbit jejunal brush-border membrane vesicles. Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH Am J Physiol; 1989 Jul; 257(1 Pt 1):G65-72. PubMed ID: 2750911 [TBL] [Abstract][Full Text] [Related]
11. Effect of membrane surface potential on the uptake and the inhibition of cationic compounds in rat intestinal brush-border membrane vesicles and liposomes. Sugawara M; Oikawa H; Kobayashi M; Iseki K; Miyazaki K Biochim Biophys Acta; 1995 Mar; 1234(1):22-8. PubMed ID: 7880857 [TBL] [Abstract][Full Text] [Related]
12. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum. Wilson FA; Treanor LL Biochim Biophys Acta; 1979 Jul; 554(2):430-40. PubMed ID: 486452 [TBL] [Abstract][Full Text] [Related]
13. A structure-relationship study of the uptake of aliphatic polyamine compounds by rat intestinal brush-border membrane vesicles. Kobayashi M; Suruga S; Takeuchi H; Sugawara M; Iseki K; Miyazaki K J Pharm Pharmacol; 1997 May; 49(5):511-5. PubMed ID: 9178186 [TBL] [Abstract][Full Text] [Related]
14. Transport of tri- and dicarboxylic acids across the intestinal brush border membrane of calves. Wolffram S; Bisang B; Grenacher B; Scharrer E J Nutr; 1990 Jul; 120(7):767-74. PubMed ID: 2366111 [TBL] [Abstract][Full Text] [Related]
15. Increased Na(+)-H+ exchange in jejunal brush border membrane vesicles of spontaneously hypertensive rats. Acra S; Ghishan FK Gastroenterology; 1991 Aug; 101(2):430-6. PubMed ID: 1648526 [TBL] [Abstract][Full Text] [Related]
16. Age-related modifications of leucine uptake in brush-border membrane vesicles from rat jejunum. Sacchi VF; Magagnin S Mech Ageing Dev; 1992 May; 63(3):257-73. PubMed ID: 1614225 [TBL] [Abstract][Full Text] [Related]
17. Developmental maturation of calcium transport by rat brush border membrane vesicles. Ghishan FK; Arab N Pediatr Res; 1987 Aug; 22(2):173-6. PubMed ID: 3116493 [TBL] [Abstract][Full Text] [Related]
18. Membrane-potential-dependent uptake of tryptamine by rat intestinal brush-border membrane vesicles. Sugawara M; Sasaki M; Iseki K; Miyazaki K Biochim Biophys Acta; 1992 Nov; 1111(2):145-50. PubMed ID: 1329960 [TBL] [Abstract][Full Text] [Related]
19. Phosphate transport in human jejunal brush-border membrane vesicles. Borowitz SM; Ghishan FK Gastroenterology; 1989 Jan; 96(1):4-10. PubMed ID: 2909436 [TBL] [Abstract][Full Text] [Related]
20. Transport characteristics of L-glutamate in human jejunal brush-border membrane vesicles. Harig JM; Rajendran VM; Barry JA; Ramaswamy K Biochim Biophys Acta; 1987 Oct; 903(2):358-64. PubMed ID: 2888487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]