BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8570596)

  • 21. The transducin cascade is involved in the light-induced structural changes observed by neutron diffraction on retinal rod outer segments.
    Vuong TM; Pfister C; Worcester DL; Chabre M
    Biophys J; 1987 Oct; 52(4):587-94. PubMed ID: 3118983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light- and GTP-activated photoreceptor phosphodiesterase: regulation by a light-activated GTPase and identification of rhodopsin as the phosphodiesterase binding site.
    Bitensky MW; Wheeler GL; Aloni B; Vetury S; Matuo Y
    Adv Cyclic Nucleotide Res; 1978; 9():553-72. PubMed ID: 27082
    [No Abstract]   [Full Text] [Related]  

  • 23. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoreceptor phosphodiesterase: interaction of inhibitory gamma subunit and cyclic GMP with specific binding sites on catalytic subunits.
    Artemyev NO; Arshavsky VY; Cote RH
    Methods; 1998 Jan; 14(1):93-104. PubMed ID: 9500861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors.
    Devary O; Heichal O; Blumenfeld A; Cassel D; Suss E; Barash S; Rubinstein CT; Minke B; Selinger Z
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6939-43. PubMed ID: 3116547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction.
    Hamer RD
    Mol Vis; 2000 Dec; 6():265-86. PubMed ID: 11139649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.
    Hamer RD; Nicholas SC; Tranchina D; Liebman PA; Lamb TD
    J Gen Physiol; 2003 Oct; 122(4):419-44. PubMed ID: 12975449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.
    Kisselev OG; Kao J; Ponder JW; Fann YC; Gautam N; Marshall GR
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4270-5. PubMed ID: 9539726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin.
    Laitko U; Hofmann KP
    Biophys J; 1998 Feb; 74(2 Pt 1):803-15. PubMed ID: 9533693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excised patches of plasma membrane from vertebrate rod outer segments retain a functional phototransduction enzymatic cascade.
    Ertel EA
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4226-30. PubMed ID: 1693436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of G-protein activation by rhodopsin.
    Shichida Y; Morizumi T
    Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Physiological roles of rhodopsin phosphorylation and dephosphorylation and its relationship with retinitis pigmentosa].
    Oguro H
    Nippon Ganka Gakkai Zasshi; 1996 Aug; 100(8):575-81. PubMed ID: 8810231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How photons start vision.
    Baylor D
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):560-5. PubMed ID: 8570595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early steps in the light-triggered activation of the cyclic GMP enzymatic pathway in rod photoreceptors.
    Kühn H
    Prog Clin Biol Res; 1984; 164():303-11. PubMed ID: 6097906
    [No Abstract]   [Full Text] [Related]  

  • 39. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade.
    Katz B; Minke B
    Prog Retin Eye Res; 2018 Sep; 66():200-219. PubMed ID: 29738822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism.
    Kisselev OG; Meyer CK; Heck M; Ernst OP; Hofmann KP
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4898-903. PubMed ID: 10220390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.