These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8570720)

  • 1. Autofluorescence spectroscopy of optically trapped cells.
    König K; Liu Y; Sonek GJ; Berns MW; Tromberg BJ
    Photochem Photobiol; 1995 Nov; 62(5):830-5. PubMed ID: 8570720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress.
    König K; So PT; Mantulin WW; Tromberg BJ; Gratton E
    J Microsc; 1996 Sep; 183(Pt 3):197-204. PubMed ID: 8858857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa.
    König K; Tadir Y; Patrizio P; Berns MW; Tromberg BJ
    Hum Reprod; 1996 Oct; 11(10):2162-4. PubMed ID: 8943522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry.
    Liu Y; Sonek GJ; Berns MW; Tromberg BJ
    Biophys J; 1996 Oct; 71(4):2158-67. PubMed ID: 8889192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser.
    Schneckenburger H; Hendinger A; Sailer R; Gschwend MH; Strauss WS; Bauer M; Schütze K
    J Biomed Opt; 2000 Jan; 5(1):40-4. PubMed ID: 10938764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser tweezers are sources of two-photon excitation.
    König K
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):721-33. PubMed ID: 9764743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for localized cell heating induced by infrared optical tweezers.
    Liu Y; Cheng DK; Sonek GJ; Berns MW; Chapman CF; Tromberg BJ
    Biophys J; 1995 May; 68(5):2137-44. PubMed ID: 7612858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microspectrofluorometry of autofluorescence emission from human leukemic living cells under oxidative stress.
    Bondza-Kibangou P; Millot C; Dufer J; Millot JM
    Biol Cell; 2001 Nov; 93(5):273-80. PubMed ID: 11770840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption.
    Nadiarnykh O; Thomas G; Van Voskuilen J; Sterenborg HJ; Gerritsena HC
    J Biomed Opt; 2012 Nov; 17(11):116024. PubMed ID: 23214185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers.
    Dasgupta R; Ahlawat S; Verma RS; Uppal A; Gupta PK
    J Biomed Opt; 2010; 15(5):055009. PubMed ID: 21054091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic characterization of oral epithelial dysplasia and squamous cell carcinoma using multiphoton autofluorescence micro-spectroscopy.
    Pal R; Edward K; Ma L; Qiu S; Vargas G
    Lasers Surg Med; 2017 Nov; 49(9):866-873. PubMed ID: 28677822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications of cellular autofluorescence emission spectra under oxidative stress induced by 1 alpha,25dihydroxyvitamin D(3) and its analog EB1089.
    Bondza-Kibangou P; Millot C; Dufer J; Millot JM
    Technol Cancer Res Treat; 2004 Aug; 3(4):383-91. PubMed ID: 15270590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure.
    König K; Berns MW; Tromberg BJ
    J Photochem Photobiol B; 1997 Jan; 37(1-2):91-5. PubMed ID: 9043097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging.
    Semenov AN; Yakimov BP; Rubekina AA; Gorin DA; Drachev VP; Zarubin MP; Velikanov AN; Lademann J; Fadeev VV; Priezzhev AV; Darvin ME; Shirshin EA
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1064  nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence.
    Patil CA; Pence IJ; Lieber CA; Mahadevan-Jansen A
    Opt Lett; 2014 Jan; 39(2):303-6. PubMed ID: 24562132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation.
    Douki T; Reynaud-Angelin A; Cadet J; Sage E
    Biochemistry; 2003 Aug; 42(30):9221-6. PubMed ID: 12885257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength dependence of cell cloning efficiency after optical trapping.
    Liang H; Vu KT; Krishnan P; Trang TC; Shin D; Kimel S; Berns MW
    Biophys J; 1996 Mar; 70(3):1529-33. PubMed ID: 8785310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap.
    Steubing RW; Cheng S; Wright WH; Numajiri Y; Berns MW
    Cytometry; 1991; 12(6):505-10. PubMed ID: 1764975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise analysis of the autofluorescence characteristics of rat colon under UVA and violet light excitation.
    Nakano K; Harada Y; Yamaoka Y; Miyawaki K; Imaizumi K; Takaoka H; Nakaoka M; Wakabayashi N; Yoshikawa T; Takamatsu T
    Curr Pharm Biotechnol; 2013; 14(2):172-9. PubMed ID: 22356112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-gated autofluorescence microscopy of motile green microalga in an optical trap.
    König K; Boehme S; Leclerc N; Ahuja R
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):763-70. PubMed ID: 9764746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.