These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 857096)

  • 1. Preferential and absolute adsorption to poly[N5-(3-hydroxypropyl)-L-glutamine] in water/2-chloroethanol solvent mixtures.
    Feyereisen C; Morcellet M; Loucheux C
    Macromolecules; 1977; 10(2):485-8. PubMed ID: 857096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution properties of synthetic polypeptides. VI. Helix-coil transition of poly-N5-(3-hydroxypropyl)-L-glutamine.
    Okita K; Teramoto A; Fujita H
    Biopolymers; 1970; 9(6):717-38. PubMed ID: 5444131
    [No Abstract]   [Full Text] [Related]  

  • 3. The interaction of poly(N5-(3-hydroxypropyl)-L-glutamine) with solvent components in water/dioxane mixtures.
    Inoue H; Izumi T
    Biopolymers; 1976 Apr; 15(4):797-812. PubMed ID: 1252607
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of urea and guanidine on the helix content of poly-N5-(3-hydroxypropyl)-L-glutamine in aqueous-solvent systems.
    YARON A; LUPUN ; SELA M; BERGER A
    Biochim Biophys Acta; 1963 Feb; 69():430-2. PubMed ID: 14002493
    [No Abstract]   [Full Text] [Related]  

  • 5. 13C nmr study of the helix-coil transition of poly-N5-(3-hydroxypropyl)-L-glutamine.
    Di Blasi R; Verdini AS
    Biopolymers; 1974 Apr; 13(4):765-8. PubMed ID: 4847586
    [No Abstract]   [Full Text] [Related]  

  • 6. Conformational behavior of poly-N5-(3-hydroxypropyl)-L-glutamine in water-methanol mixtures studied by 13C Nmr and CD spectroscopy.
    Di Blasi R; Verdini AS
    Biopolymers; 1974 Nov; 13(11):2209-25. PubMed ID: 4429778
    [No Abstract]   [Full Text] [Related]  

  • 7. Biodegradation of 2-chloroethanol by freely suspended and adsorbed immobilized Pseudomonas putida US2 in soil.
    Overmeyer C; Rehm HJ
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):143-9. PubMed ID: 7766127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared spectroscopic study of the secondary structure of melittin in water, 2-chloroethanol, and phospholipid bilayer dispersions.
    Lavialle F; Adams RG; Levin IW
    Biochemistry; 1982 May; 21(10):2305-12. PubMed ID: 7093190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the helix-coil transition of a polypeptide with non-ionic side groups, derived from ultrasonic relaxation measurements.
    Gruenewald B; Nicola CU; Lustig A; Schwarz G; Klump H
    Biophys Chem; 1979 Jan; 9(2):137-47. PubMed ID: 427245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Conformation of trypsin molecules in aqueous solutions containing 2-chloroethanol].
    Kushner VP
    Biofizika; 1980; 25(6):972-6. PubMed ID: 7448231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix-coil stability constants for the naturally occurring amino acids in water. XXIII. Proline parameters from random poly (hydroxybutylglutamine-co-L-proline).
    Altmann KH; Wójcik J; Vásquez M; Scheraga HA
    Biopolymers; 1990; 30(1-2):107-20. PubMed ID: 2224046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helix-coil stability constants for the naturally occurring amino acids in water. IX. Glutamic acid parameters from random poly(hydroxybutylglutamine-co-L-glutamic acid).
    Maxfield FR; Alter JE; Taylor GT; Scheraga HA
    Macromolecules; 1975; 8(4):479-91. PubMed ID: 240987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix-coil stability constants for the naturally occurring amino acids in water. 16. Aspartic acid parameters from random poly(hydroxybutylglutamine-co-L-aspartic acid).
    Kobayashi Y; Cardinaux F; Zweifel BO; Scheraga HA
    Macromolecules; 1977; 10(6):1271-83. PubMed ID: 926822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential polypeptides. 2. Helix--coil transition in poly(gamma-benzyl epsilon-carbobenzoxy-L-lysyl-L-glutamate).
    Itou S; Lee DC; Teramoto A
    Macromolecules; 1977; 10(5):1061-5. PubMed ID: 916732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of diblock polypeptides on polystyrene latex.
    Jain R; Forciniti D
    Langmuir; 2012 Oct; 28(43):15323-35. PubMed ID: 23009064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of N5-(2-hydroxyethyl)-L-glutamine and L-glutamic acid homopolymers and copolymers by papain.
    Pytela J; Kotva R; Metalová M; Rypácek F
    Int J Biol Macromol; 1990 Aug; 12(4):241-6. PubMed ID: 1982924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential adsorption of the additive is not a prerequisite for cononsolvency in water-rich mixtures.
    Wang J; Wang N; Liu B; Bai J; Gong P; Ru G; Feng J
    Phys Chem Chem Phys; 2017 Nov; 19(44):30097-30106. PubMed ID: 29099128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution properties of synthetic polypeptides. 18. Helix-coil transition of poly-N5-(2-hydroxyethyl)L-glutamine.
    Miyake M; Akita S; Teramoto A; Norisuye T; Fumita H
    Biopolymers; 1974 Jun; 13(6):1173-86. PubMed ID: 4854319
    [No Abstract]   [Full Text] [Related]  

  • 19. Helix-coil stability constants for the naturally occurring amino acids in water. 15 Arginine parameters from random poly(hydroxybutylglutamine-co-L-arginine).
    Konishi Y; van Nispen JW; Davenport G; Scheraga HA
    Macromolecules; 1977; 10(6):1264-71. PubMed ID: 926821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cosolvents on the adsorption of peptides at the solid-liquid interface.
    Mungikar A; Forciniti D
    Biomacromolecules; 2006 Jan; 7(1):239-51. PubMed ID: 16398521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.