These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8571469)
1. Ultrasound backscatter at 30 MHz from human blood: influence of rouleau size affected by blood modification and shear rate. van der Heiden MS; de Kroon MG; Bom N; Borst C Ultrasound Med Biol; 1995; 21(6):817-26. PubMed ID: 8571469 [TBL] [Abstract][Full Text] [Related]
2. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound. Amararene A; Cloutier G Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261 [TBL] [Abstract][Full Text] [Related]
3. Effect of Clutter Filter in High-Frame-Rate Ultrasonic Backscatter Coefficient Analysis. Omura M; Yagi K; Nagaoka R; Yoshida K; Yamaguchi T; Hasegawa H Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904843 [TBL] [Abstract][Full Text] [Related]
4. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz. Huang CC; Chang YC IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):357-68. PubMed ID: 21342821 [TBL] [Abstract][Full Text] [Related]
5. Non-Gaussian statistics and temporal variations of the ultrasound signal backscattered by blood at frequencies between 10 and 58 MHz. Cloutier G; Daronatand M; Savéry D; Garcia D; Durand LG; Foster FS J Acoust Soc Am; 2004 Jul; 116(1):566-77. PubMed ID: 15296017 [TBL] [Abstract][Full Text] [Related]
6. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit. Fontaine I; Cloutier G J Acoust Soc Am; 2003 May; 113(5):2893-900. PubMed ID: 12765406 [TBL] [Abstract][Full Text] [Related]
7. Effect of red cell clustering and anisotropy on ultrasound blood backscatter: a Monte Carlo study. Savéry D; Cloutier G IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):94-103. PubMed ID: 15742565 [TBL] [Abstract][Full Text] [Related]
8. Cyclic changes in blood echogenicity under pulsatile flow are frequency dependent. Nguyen LC; Yu FT; Cloutier G Ultrasound Med Biol; 2008 Apr; 34(4):664-73. PubMed ID: 18187250 [TBL] [Abstract][Full Text] [Related]
9. Measurement of the ultrasonic properties of vascular tissues and blood from 35-65 MHz. Lockwood GR; Ryan LK; Hunt JW; Foster FS Ultrasound Med Biol; 1991; 17(7):653-66. PubMed ID: 1781068 [TBL] [Abstract][Full Text] [Related]
10. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. Qin Z; Durand LG; Allard L; Cloutier G Ultrasound Med Biol; 1998 May; 24(4):503-11. PubMed ID: 9651960 [TBL] [Abstract][Full Text] [Related]
11. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence. Brewin MP; Pike LC; Rowland DE; Birch MJ Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021 [TBL] [Abstract][Full Text] [Related]
12. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters. Yang M; Krueger TM; Miller JG; Holland MR Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326 [TBL] [Abstract][Full Text] [Related]
13. Ultrasonic backscatter from flowing whole blood. II: Dependence on frequency and fibrinogen concentration. Yuan YW; Shung KK J Acoust Soc Am; 1988 Oct; 84(4):1195-200. PubMed ID: 3058769 [TBL] [Abstract][Full Text] [Related]
14. Normalization and backscatter spectral analysis of human carotid arterial data acquired using a clinical linear array ultrasound imaging system. Sareen M; Waters K; Nair A; Vince DG Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2968-71. PubMed ID: 19163329 [TBL] [Abstract][Full Text] [Related]
15. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation. Cloutier G; Qin Z; Durand LG; Teh BG IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457 [TBL] [Abstract][Full Text] [Related]
16. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz. Huang CC Phys Med Biol; 2010 Oct; 55(19):5801-15. PubMed ID: 20844333 [TBL] [Abstract][Full Text] [Related]
17. High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation. Libgot-Callé R; Ossant F; Gruel Y; Lermusiaux P; Patat F Ultrasound Med Biol; 2008 Feb; 34(2):252-64. PubMed ID: 18077082 [TBL] [Abstract][Full Text] [Related]
18. Effects of cell spatial organization and size distribution on ultrasound backscattering. Saha RK; Kolios MC IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2118-31. PubMed ID: 21989875 [TBL] [Abstract][Full Text] [Related]
19. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow. Haider L; Snabre P; Boynard M Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic scattering measurements of a live single cell at 86 MHz. Lee C; Jung H; Lam KH; Yoon C; Shung KK IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Nov; 62(11):1968-78. PubMed ID: 26559626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]