BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 8572700)

  • 41. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis.
    Preisig O; Anthamatten D; Hennecke H
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3309-13. PubMed ID: 8386371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The regulatory status of the fixL- and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti.
    Anthamatten D; Hennecke H
    Mol Gen Genet; 1991 Jan; 225(1):38-48. PubMed ID: 2000090
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline.
    Korasick DA; Pemberton TA; Arentson BW; Becker DF; Tanner JJ
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29295473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes: fixA, fixB and etfS, etfL.
    Weidenhaupt M; Rossi P; Beck C; Fischer HM; Hennecke H
    Arch Microbiol; 1996 Mar; 165(3):169-78. PubMed ID: 8599534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
    Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new Bradyrhizobium japonicum gene required for free-living growth and bacteroid development is conserved in other bacteria and in plants.
    Weidenhaupt M; Schmid-Appert M; Thöny B; Hennecke H; Fischer HM
    Mol Plant Microbe Interact; 1995; 8(3):454-64. PubMed ID: 7655065
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum.
    Ritz D; Thöny-Meyer L; Hennecke H
    Mol Gen Genet; 1995 Apr; 247(1):27-38. PubMed ID: 7715601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other triterpenoid cyclases.
    Perzl M; Müller P; Poralla K; Kannenberg EL
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1235-1242. PubMed ID: 9141686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cloning, sequencing and mutational analysis of the cytochrome c552 gene (cycB) from Bradyrhizobium japonicum strain 110.
    Rossbach S; Loferer H; Acuña G; Appleby CA; Hennecke H
    FEMS Microbiol Lett; 1991 Oct; 67(2):145-52. PubMed ID: 1663888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of the β3-α3 loop of the proline dehydrogenase domain in allosteric regulation of membrane association of proline utilization A.
    Zhu W; Haile AM; Singh RK; Larson JD; Smithen D; Chan JY; Tanner JJ; Becker DF
    Biochemistry; 2013 Jul; 52(26):4482-91. PubMed ID: 23713611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The sequences of hypF, hypC and hypD complete the hyp gene cluster required for hydrogenase activity in Bradyrhizobium japonicum.
    Olson JW; Maier RJ
    Gene; 1997 Oct; 199(1-2):93-9. PubMed ID: 9358044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein.
    Moxley MA; Zhang L; Christgen S; Tanner JJ; Becker DF
    Biochemistry; 2017 Jun; 56(24):3078-3088. PubMed ID: 28558236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters.
    Martin GB; Thomashow MF; Chelm BK
    J Bacteriol; 1989 Oct; 171(10):5638-45. PubMed ID: 2793830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway.
    Lee IR; Lui EY; Chow EW; Arras SD; Morrow CA; Fraser JA
    Genetics; 2013 Jun; 194(2):421-33. PubMed ID: 23564202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymatic properties of the purified putA protein from Salmonella typhimurium.
    Menzel R; Roth J
    J Biol Chem; 1981 Sep; 256(18):9762-6. PubMed ID: 6270101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human liver glutamic gamma-semialdehyde dehydrogenase: structural relationship to the yeast enzyme.
    Hempel J; Eckey R; Berie D; Romovacek H; Agarwal DP; Goedde HW
    Comp Biochem Physiol B; 1992 Aug; 102(4):791-93. PubMed ID: 1395511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and properties of the bifunctional proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa.
    Meile L; Leisinger T
    Eur J Biochem; 1982 Dec; 129(1):67-75. PubMed ID: 6819140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.