BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8572932)

  • 1. Inhibition of gamma-glutamyltranspeptidase decreases renal deposition of mercury after mercury vapor exposure.
    Kim CY; Watanabe C; Kasanuma Y; Satoh H
    Arch Toxicol; 1995; 69(10):722-4. PubMed ID: 8572932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice.
    Tanaka T; Naganuma A; Imura N
    Toxicology; 1990 Mar; 60(3):187-98. PubMed ID: 1969183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubular secretion and reabsorption of mercury compounds in mouse kidney.
    Tanaka-Kagawa T; Naganuma A; Imura N
    J Pharmacol Exp Ther; 1993 Feb; 264(2):776-82. PubMed ID: 8094752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl mercury and selenium interaction in relation to mouse kidney gamma-glutamyltranspeptidase, ultrastructure, and function.
    Fair PH; Dougherty WJ; Braddon SA
    Toxicol Appl Pharmacol; 1985 Aug; 80(1):78-96. PubMed ID: 2862718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of extracellular glutathione and gamma-glutamyltranspeptidase in the disposition and kidney toxicity of inorganic mercury in rats.
    de Ceaurriz J; Payan JP; Morel G; Brondeau MT
    J Appl Toxicol; 1994; 14(3):201-6. PubMed ID: 7916024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutathione in reduction of arsenate and of gamma-glutamyltranspeptidase in disposition of arsenite in rats.
    Csanaky I; Gregus Z
    Toxicology; 2005 Feb; 207(1):91-104. PubMed ID: 15590125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of inhibition of gamma-glutamyltranspeptidase on biliary and urinary excretion of glutathione-derived thiols and methylmercury.
    Gregus Z; Stein AF; Klaassen CD
    J Pharmacol Exp Ther; 1987 Jul; 242(1):27-32. PubMed ID: 2886637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury.
    Zalups RK; Lash LH
    Drug Metab Dispos; 1997 Apr; 25(4):516-23. PubMed ID: 9107552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of glutathione-induced protection from hyperbaric hyperoxia by acivicin.
    Peacock MD; Schenk DA; Lawrence RA; Morgan JA; Jenkinson SG
    J Appl Physiol (1985); 1994 Mar; 76(3):1279-84. PubMed ID: 7911799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver.
    Obrador E; Carretero J; Ortega A; Medina I; Rodilla V; Pellicer JA; Estrela JM
    Hepatology; 2002 Jan; 35(1):74-81. PubMed ID: 11786961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disposition of inhaled mercury vapor in pregnant rats: maternal toxicity and effects on developmental outcome.
    Morgan DL; Chanda SM; Price HC; Fernando R; Liu J; Brambila E; O'Connor RW; Beliles RP; Barone S
    Toxicol Sci; 2002 Apr; 66(2):261-73. PubMed ID: 11896293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ethanol pretreatment on mercury distribution in organs of fetal guinea pigs following in utero exposure to mercury vapor.
    Yoshida M; Satoh H; Sumi Y
    Toxicology; 1997 May; 119(3):193-201. PubMed ID: 9152015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acivicin induces apoptosis independently of gamma-glutamyltranspeptidase activity.
    Aberkane H; Frank P; Galteau MM; Wellman M
    Biochem Biophys Res Commun; 2001 Aug; 285(5):1162-7. PubMed ID: 11478776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic anion transport and action of gamma-glutamyl transpeptidase in kidney linked mechanistically to renal tubular uptake of inorganic mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1995 Jun; 132(2):289-98. PubMed ID: 7785056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disposition of inorganic mercury following biliary obstruction and chemically induced glutathione depletion: dispositional changes one hour after the intravenous administration of mercuric chloride.
    Zalups RK; Barfuss DW; Lash LH
    Toxicol Appl Pharmacol; 1999 Jan; 154(2):135-44. PubMed ID: 9925797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acivicin-induced alterations in renal and hepatic glutathione concentrations and in gamma-glutamyltransferase activities.
    Lantum HB; Iyer RA; Anders MW
    Biochem Pharmacol; 2004 Apr; 67(7):1421-6. PubMed ID: 15013858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible role of hepatic glutathione in transport of methylmercury into mouse kidney.
    Naganuma A; Oda-Urano N; Tanaka T; Imura N
    Biochem Pharmacol; 1988 Jan; 37(2):291-6. PubMed ID: 3342085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule.
    Cannon VT; Barfuss DW; Zalups RK
    J Am Soc Nephrol; 2000 Mar; 11(3):394-402. PubMed ID: 10703663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of renal peritubular extraction of plasma glutathione. The catalytic activity of contralumenal gamma-glutamyltransferase is prerequisite to the apparent peritubular extraction of plasma glutathione.
    Inoue M; Shinozuka S; Morino Y
    Eur J Biochem; 1986 Jun; 157(3):605-9. PubMed ID: 2873036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of testosterone in gamma-glutamyltranspeptidase-dependent renal methylmercury uptake in mice.
    Tanaka T; Naganuma A; Miura N; Imura N
    Toxicol Appl Pharmacol; 1992 Jan; 112(1):58-63. PubMed ID: 1346343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.