These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8572982)

  • 1. An artificial neural network-based noninvasive detector for suction and left atrium pressure in the control of rotary blood pumps: an in vitro study.
    Stöcklmayer C; Dorffner G; Schmidt C; Schima H
    Artif Organs; 1995 Jul; 19(7):719-24. PubMed ID: 8572982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinical monitoring system for centrifugal blood pumps.
    Holzer S; Scherer R; Schmidt C; Schwendenwein I; Wieselthaler G; Noisser R; Schima H
    Artif Organs; 1995 Jul; 19(7):708-12. PubMed ID: 8572980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outflow control for avoiding atrial suction in a continuous flow total artificial heart.
    Olegario PS; Yoshizawa M; Tanaka A; Abe K; Takeda H; Yambe T; Nitta S
    Artif Organs; 2003 Jan; 27(1):92-8. PubMed ID: 12534719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frank-starling control of a left ventricular assist device.
    Stevens MC; Gaddum NR; Pearcy M; Salamonsen RF; Timms DL; Mason DG; Fraser JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1335-8. PubMed ID: 22254563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rule-based controller based on suction detection for rotary blood pumps.
    Ferreira A; Boston JR; Antaki JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3978-81. PubMed ID: 18002871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the circulatory system during support with a rotary blood pump.
    Schima H; Honigschnabel J; Trubel W; Thoma H
    ASAIO Trans; 1990; 36(3):M252-4. PubMed ID: 2252670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic control algorithms for rotary blood pumps using pressure sensor input.
    Bullister E; Reich S; Sluetz J
    Artif Organs; 2002 Nov; 26(11):931-8. PubMed ID: 12406146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of physiologically significant pumping states in an implantable rotary blood pump: patient trial results.
    Karantonis DM; Mason DG; Salamonsen RF; Ayre PJ; Cloherty SL; Lovell NH
    ASAIO J; 2007; 53(5):617-22. PubMed ID: 17885336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of a pulsatile assist device for a centrifugal pump using a new principle.
    Iwaya F; Igari T; Hoshino S; Hikichi H
    Artif Organs; 1995 Jul; 19(7):697-700. PubMed ID: 8572977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of a compliant inflow cannula reservoir to reduce suction events with extracorporeal rotary ventricular assist device support.
    Gregory SD; Timms D; Gaddum NR; McDonald C; Pearcy MJ; Fraser JF
    Artif Organs; 2011 Aug; 35(8):765-72. PubMed ID: 21843291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2006 Sep; 30(9):671-9. PubMed ID: 16934095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of suction detection during different pumping states in an implantable rotary blood pump.
    Ng SC; Lim E; Mason DG; Avolio AP; Lovell NH
    Artif Organs; 2013 Aug; 37(8):E145-54. PubMed ID: 23635073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable suction detection for patients with rotary blood pumps.
    Mason DG; Hilton AK; Salamonsen RF
    ASAIO J; 2008; 54(4):359-66. PubMed ID: 18645352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.
    Gregory SD; Schummy E; Pearcy M; Pauls JP; Tansley G; Fraser JF; Timms D
    Artif Organs; 2015 Feb; 39(2):102-9. PubMed ID: 25041754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated non-invasive detection of pumping states in an implantable rotary blood pump.
    Karantonis DM; Cloherty SL; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5386-9. PubMed ID: 17946699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.