These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8572982)

  • 21. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of ventricular suction in an implantable rotary blood pump using support vector machines.
    Wang Y; Faragallah G; Divo E; Simaan MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3318-21. PubMed ID: 22255049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.
    Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH
    Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiologic control of rotary blood pumps: an in vitro study.
    Giridharan GA; Pantalos GM; Gillars KJ; Koenig SC; Skliar M
    ASAIO J; 2004; 50(5):403-9. PubMed ID: 15497377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of a new implantable cardiac assist centrifugal pump.
    Tevaearai HT; Mueller XM; Jegger D; Augsburger M; Burki M; von Segesser LK
    Artif Organs; 2001 Jan; 25(1):67-9. PubMed ID: 11167564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mock circulation loop to investigate hemolysis in a pulsatile total artificial heart.
    Gräf F; Finocchiaro T; Laumen M; Mager I; Steinseifer U
    Artif Organs; 2015 May; 39(5):416-22. PubMed ID: 25586541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced suction detection for an axial flow pump.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2006 Sep; 30(9):665-70. PubMed ID: 16934094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preload sensitivity of the Jarvik 2000 and HeartMate II left ventricular assist devices.
    Khalil HA; Cohn WE; Metcalfe RW; Frazier OH
    ASAIO J; 2008; 54(3):245-8. PubMed ID: 18496273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive control of a biventricular assist device with compliant inflow cannulae.
    Gregory SD; Pearcy MJ; Timms D
    Artif Organs; 2012 Aug; 36(8):683-90. PubMed ID: 22882438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a suction detection system for axial blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2004 Aug; 28(8):709-16. PubMed ID: 15270952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noninvasive monitoring of rotary blood pumps: necessity, possibilities, and limitations.
    Schima H; Trubel W; Moritz A; Wieselthaler G; Stöhr HG; Thoma H; Losert U; Wolner E
    Artif Organs; 1992 Apr; 16(2):195-202. PubMed ID: 10078244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps.
    Ng BC; Smith PA; Nestler F; Timms D; Cohn WE; Lim E
    Ann Biomed Eng; 2017 Mar; 45(3):567-579. PubMed ID: 27543069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemodynamic system analysis of intraarterial microaxial pumps in vitro and in vivo.
    Siess T; Meyns B; Spielvogel K; Reul H; Rau G; Flameng W
    Artif Organs; 1996 Jun; 20(6):650-61. PubMed ID: 8817972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Standardized Comparison of Selected Physiological Controllers for Rotary Blood Pumps: In Vitro Study.
    Petrou A; Lee J; Dual S; Ochsner G; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Mar; 42(3):E29-E42. PubMed ID: 29094351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.