These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8573149)

  • 1. Rapid changes in light-scattering in the prism of Torpedo electric organ slice associated with the production of postsynaptic potentials.
    Tasaki I
    Biochem Biophys Res Commun; 1996 Jan; 218(1):298-301. PubMed ID: 8573149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and thermal changes in the Torpedo electric organ associated with its postsynaptic potentials.
    Tasaki I
    Biochem Biophys Res Commun; 1995 Oct; 215(2):654-8. PubMed ID: 7488005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid volume expansion in the Torpedo electric organ associated with its postsynaptic potential.
    Tasaki I
    Biochem Biophys Res Commun; 1997 Apr; 233(2):305-8. PubMed ID: 9144529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The release of ATP triggered by transmitter action and its possible physiological significance: retrograde transmission.
    Israƫl M; Meunier FM
    J Physiol (Paris); 1978; 74(5):485-90. PubMed ID: 217996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of delta 9-tetrahydrocannabinol on synaptic transmission in the electric eel electroplaque.
    Niemi WD
    Res Commun Chem Pathol Pharmacol; 1979 Sep; 25(3):537-46. PubMed ID: 228364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two different mechanisms underlie reversible, intrinsic optical signals in rat hippocampal slices.
    Fayuk D; Aitken PG; Somjen GG; Turner DA
    J Neurophysiol; 2002 Apr; 87(4):1924-37. PubMed ID: 11929912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processes and components participating in the generation of intrinsic optical signal changes in vitro.
    Buchheim K; Wessel O; Siegmund H; Schuchmann S; Meierkord H
    Eur J Neurosci; 2005 Jul; 22(1):125-32. PubMed ID: 16029202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid heat production associated with excitation of electric organs of the electric eel.
    Tasaki I; Byrne PM
    Biochem Biophys Res Commun; 1993 Dec; 197(2):910-5. PubMed ID: 8267630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial release of Ca2+ during sustained nerve activity in the electric organ of Torpedo marmorata.
    Schmidt R; Zimmermann H
    Exp Brain Res; 1980; 38(4):405-17. PubMed ID: 6244970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse.
    Zhang J; Han VZ; Meek J; Bell CC
    J Neurophysiol; 2007 Mar; 97(3):2191-203. PubMed ID: 17229820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of LSD-25 and mescaline on the electroplax of the electric eel.
    Webb GD; Farquharson DA
    Am J Physiol; 1971 Dec; 221(6):1802-8. PubMed ID: 4330905
    [No Abstract]   [Full Text] [Related]  

  • 13. Spontaneous quantal and subquantal transmitter release at the Torpedo nerve-electroplaque junction.
    Muller D; Dunant Y
    Neuroscience; 1987 Mar; 20(3):911-21. PubMed ID: 3037436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of rapid changes in birefringence, light scattering and dye absorbance associated with excitation of nerve fibers.
    Tasaki I; Byrne PM
    Jpn J Physiol; 1993; 43 Suppl 1():S67-75. PubMed ID: 7505858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mormyromast region of the mormyrid electrosensory lobe. II. Responses to input from central sources.
    Mohr C; Roberts PD; Bell CC
    J Neurophysiol; 2003 Aug; 90(2):1211-23. PubMed ID: 12904506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons.
    Kelly PT; Mackinnon RL; Dietz RV; Maher BJ; Wang J
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):232-48. PubMed ID: 15857686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical induction of synaptic plasticity using a light-sensitive channel.
    Zhang YP; Oertner TG
    Nat Methods; 2007 Feb; 4(2):139-41. PubMed ID: 17195846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological aspects of synaptic transmission at the electromotor junction of Torpedo marmorata.
    Erdelyi L; Krenz WD
    Comp Biochem Physiol A Comp Physiol; 1984; 79(4):505-11. PubMed ID: 6150785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arcachon and cholinergic transmission.
    Whittaker VP
    J Physiol Paris; 1998 Apr; 92(2):53-7. PubMed ID: 9782444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature changes associated with excitation of the electric organ in the African electric catfish.
    Tasaki I; Byrne PM
    Biochem Biophys Res Commun; 1994 Apr; 200(2):704-9. PubMed ID: 8179603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.