BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8573321)

  • 1. Effect of PQQ glucose dehydrogenase overexpression in Escherichia coli on sugar-dependent respiration.
    Sode K; Sugimoto S; Watanabe M; Tsugawa W
    J Biotechnol; 1995 Nov; 43(1):41-4. PubMed ID: 8573321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased production of recombinant pyrroloquinoline quinone (PQQ) glucose dehydrogenase by metabolically engineered Escherichia coli strain capable of PQQ biosynthesis.
    Sode K; Ito K; Witarto AB; Watanabe K; Yoshida H; Postma P
    J Biotechnol; 1996 Aug; 49(1-3):239-43. PubMed ID: 8879174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge engineering of PQQ glucose dehydrogenase for downstream processing.
    Koh H; Igarashi S; Sode K
    Biotechnol Lett; 2003 Oct; 25(20):1695-701. PubMed ID: 14626410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system.
    Hernández-Montalvo V; Valle F; Bolivar F; Gosset G
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):186-91. PubMed ID: 11693918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a chimeric pyrroloquinoline quinone glucose dehydrogenase: improvement of EDTA tolerance, thermal stability and substrate specificity.
    Yoshida H; Kojima K; Witarto AB; Sode K
    Protein Eng; 1999 Jan; 12(1):63-70. PubMed ID: 10065712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1994; 45-46():367-81. PubMed ID: 8010766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutants of Escherichia coli producing pyrroloquinoline quinone.
    Biville F; Turlin E; Gasser F
    J Gen Microbiol; 1991 Aug; 137(8):1775-82. PubMed ID: 1659611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.
    Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA
    Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions.
    Balderas-Hernández VE; Hernández-Montalvo V; Bolívar F; Gosset G; Martínez A
    Appl Biochem Biotechnol; 2011 Feb; 163(4):485-96. PubMed ID: 20740380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of mannokinase in Escherichia coli.
    Sebastián J; Asensio C
    Biochem Biophys Res Commun; 1967 Jul; 28(2):197-202. PubMed ID: 5342371
    [No Abstract]   [Full Text] [Related]  

  • 11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the region responsible for EDTA tolerance in PQQ glucose dehydrogenases by constructing Escherichia coli and Acinetobacter calcoaceticus chimeric enzymes.
    Sode K; Yoshida H; Matsumura K; Kikuchi T; Watanabe M; Yasutake N; Ito S; Sano H
    Biochem Biophys Res Commun; 1995 Jun; 211(1):268-73. PubMed ID: 7779095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Entner-Doudoroff pathway in Escherichia coli is induced for oxidative glucose metabolism via pyrroloquinoline quinone-dependent glucose dehydrogenase.
    Fliege R; Tong S; Shibata A; Nickerson KW; Conway T
    Appl Environ Microbiol; 1992 Dec; 58(12):3826-9. PubMed ID: 1335716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between growth enhancement and pet expression in Escherichia coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():277-92. PubMed ID: 8669901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.
    Cozier GE; Salleh RA; Anthony C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):639-47. PubMed ID: 10359647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative aspects of glucose metabolism by Escherichia coli B/r, grown in the presence of pyrroloquinoline quinone.
    Hommes RW; Simons JA; Snoep JL; Postma PW; Tempest DW; Neijssel OM
    Antonie Van Leeuwenhoek; 1991; 60(3-4):373-82. PubMed ID: 1666944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli.
    Roehl RA; Vinopal RT
    J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.